ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on a theoretical and experimental study of CuMn-V antiferromagnets. Previous works showed low-temperature antiferomagnetism and semimetal electronic structure of the semi-Heusler CuMnSb. In this paper we present theoretical predictions of h igh-temperature antiferromagnetism in the stable orthorhombic phases of CuMnAs and CuMnP. The electronic structure of CuMnAs is at the transition from a semimetal to a semiconductor and we predict that CuMnP is a semiconductor. We show that the transition to a semiconductor-like band structure upon introducing the lighter group-V elements is present in both the metastable semi-Heusler and the stable orthorhombic crystal structures. On the other hand, the orthorhombic phase is crucial for the high Neel temperature. Results of X-ray diffraction, magnetization, transport, and neutron diffraction measurements we performed on chemically synthesized CuMnAs are consistent with the theory predictions.
101 - J. Masek , F. Maca , J. Kudrnovsky 2010
We analyze microscopically the valence and impurity band models of ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with conventional parameterization and the full potential LDA+U calculations give a very similar picture of s tates near the Fermi energy which reside in an exchange-split sp-d hybridized valence band with dominant orbital character of the host semiconductor; this microscopic spectral character is consistent with the physical premise of the k.p kinetic-exchange model. On the other hand, the various models with a band structure comprising an impurity band detached from the valence band assume mutually incompatible microscopic spectral character. By adapting the tight-binding Anderson calculations individually to each of the impurity band pictures in the single Mn impurity limit and then by exploring the entire doping range we find that a detached impurity band does not persist in any of these models in ferromagnetic (Ga,Mn)As.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا