ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on density functional calculations, we present a detailed theoretical study of the electronic structure and the magnetic properties of the quasi-one dimensional chain cuprate Li_2ZrCuO_4 (Li_2CuZrO_4). For the relevant ratio of the next-nearest neighbor exchange J_2 to the nearest neighbor exchange J_1 we find alpha = -J_2/J_1 = 0.22pm0.02 which is very close to the critical point at 1/4. Owing this vicinity to a ferromagnetic-helical critical point, we study in detail the influence of structural peculiarities such as the reported Li disorder and the non-planar chain geometry on the magnetic interactions combining the results of LDA based tight-binding models with LDA+U derived exchange parameters. Our investigation is complemented by an exact diagonalization study of a multi-band Hubbard model for finite clusters predicting a strong temperature dependence of the optical conductivity for Li_2ZrCuO_4.
The optical conductivity sigma(omega) is calculated at finite temperature T for CuO_2 chain clusters within a pd-Hubbard model. Data at T = 300 K for Li_2CuO_2 are reanalyzed within this approach. The relative weights of Zhang-Rice singlet and triple t charge excitations near 2.5 and 4 eV, respectively, depend strongly on T, and a rather dramatic dependence of sigma(omega) on the ratio of the first to second neighbor exchange integrals is predicted. On the basis of these results, information about exchange interactionsfor frustrated edge-shared cuprates can be obtained from T-dependent optical spectra. Our results are also relevant for magnetically weakly coupled wide-gap insulators in general.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا