ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that, when a single relaxation time lattice Boltzmann algorithm is used to solve the hydrodynamic equations of a binary fluid for which the two components have different viscosities, strong spurious velocities in the steady state lead to inco rrect results for the equilibrium contact angle. We identify the origins of these spurious currents, and demonstrate how the results can be greatly improved by using a lattice Boltzmann method based on a multiple-relaxation-time algorithm. By considering capillary filling we describe the dependence of the advancing contact angle on the interface velocity.
Continuum hydrodynamic models of active liquid crystals have been used to describe dynamic self-organising systems such as bacterial swarms and cytoskeletal gels. A key prediction of such models is the existence of self-stabilising kink states that s pontaneously generate fluid flow in quasi-one dimensional channels. Using simple stability arguments and numerical calculations we extend previous studies to give a complete characterisation of the phase space for both contractile and extensile particles (ie pullers and pushers) moving in a narrow channel as a function of their flow alignment properties and initial orientation. This gives a framework for unifying many of the results in the literature. We describe the response of the kink states to an imposed shear, and investigate how allowing the system to be polar modifies its dynamical behaviour.
We investigate the way in which oscillating dumb-bells, a simple microscopic model of apolar swimmers, move at low Reynolds number. In accordance with Purcells Scallop Theorem a single dumb-bell cannot swim because its stroke is reciprocal in time. H owever the motion of two or more dumb-bells, with mutual phase differences, is not time reversal invariant, and hence swimming is possible. We use analytical and numerical solutions of the Stokes equations to calculate the hydrodynamic interaction between two dumb-bell swimmers and to discuss their relative motion. The cooperative effect of interactions between swimmers is explored by considering first regular, and then random arrays of dumb-bells. We find that a square array acts as a micropump. The long time behaviour of suspensions of dumb-bells is investigated and compared to that of model polar swimmers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا