ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the quantum dynamics of a one-dimensional trapped ultracold ensemble of bosonic atoms triggered by the sudden creation of a single ion. The numerical simulations are performed by means of the ab initio multiconfiguration time-dependent Har tree method for bosons which takes into account all correlations. The dynamics is analyzed via a cluster expansion approach, adapted to bosonic systems of fixed particle number, which provides a comprehensive understanding of the occurring many-body processes. After a transient during which the atomic ensemble separates into fractions which are unbound and bound with respect to the ion, we observe an oscillation in the atomic density which we attribute to the additional length and energy scale induced by the attractive long-range atom-ion interaction. This oscillation is shown to be the main source of spatial coherence and population transfer between the bound and the unbound atomic fraction. Moreover, the dynamics exhibits collapse and revival behavior caused by the dynamical build-up of two-particle correlations demonstrating that a beyond mean-field description is indispensable.
We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi one dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree met hod for bosons, a numerical exact approach to simulate quantum many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground state of the atomic ensemble in the presence of an ion. We analyse the influence of the atom number and the atom-atom interaction on the ground state properties. Interestingly, for weakly interacting atoms, we find that the ion impedes the transition from the ideal gas behaviour to the Thomas-Fermi limit. Furthermore, we show that this effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first building block for systematically investigate many-body physics of such hybrid system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا