ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Functional Theory (DFT) calculations show a weak interaction between hydrogen and helium in iron, in contrast to previous reports of a strong trapping of hydrogen at helium. The strong preference of He and H to occupy regions with low electro nic density (such as vacancies) explains this discrepancy, with vacancy-He and vacancy-H binding forces concealing the repulsive interaction between He and H. Furthermore, Rate Theory simulations based on our DFT-calculated V$_n$He$_m$H$_p$ cluster energetics predict, as it is observed in some experiments, that synergetic effects could be expected between H and He in iron under irradiation.
145 - J. M. Pruneda 2011
First-principles calculations of substitutional defects and vacancies are performed for zigzag-edged hybrid C/BN nanosheets and nanotubes which recently have been proposed to exhibit half-metallic properties. The formation energies show that defects form preferentially at the interfaces between graphene and BN domains rather than in the middle of these domains, and that substitutional defects dominate over vacancies. Chemical control can be used to favor localization of defects at C- B interfaces (nitrogen-rich environment) or C-N interfaces (nitrogen-poor environment). Although large defect concentrations have been considered here (106 cm-1), half-metallic properties can subsist when defects are localized at the C-B interface and for negatively charged defects localized at the C- N interface, hence the promising magnetic properties theoretically predicted for these zigzag-edged nanointerfaces might not be destroyed by point defects if these are conveniently engineered during synthesis.
66 - J. M. Pruneda 2010
First-principles density functional calculations are performed in C-BN heterojunctions. It is shown that the magnetism of the edge states in zigzag shaped graphene strips and polarity effects in BN strips team up to give a spin asymmetric screening t hat induces half-semimetallicity at the interface, with a gap of at least a few tenths of eV for one spin orientation and a tiny gap of hundredths of eV for the other. The dependence with ribbon widths is discussed, showing that a range of ribbon widths is required to obtain half-semimetallicity. These results open new routes for tuning electronic properties at nanointerfaces and exploring new physical effects similar to those observed at oxide interfaces, in lower dimensions.
38 - J. M. Pruneda , Ivo Souza 2008
The time evolution of wavepackets in crystals in the presence of a homogeneous electric field is formulated in k-space in a numerically tractable form. The dynamics is governed by separate equations for the motion of the waveform in k-space and for t he evolution of the underlying Bloch-like states. A one-dimensional tight-binding model is studied numerically, and both Bloch oscillations and Zener tunneling are observed. The long-lived Bloch oscillations of the wavepacket center under weak fields are accompanied by oscillations in its spatial spread. These are analyzed in terms of a k-space expression for the spread having contributions from both the quantum metric and the Berry connection of the Bloch states. We find that when sizeable spread oscillations do occur, they are mostly due to the latter term.
Using time-dependent density-functional theory we calculate from first principles the rate of energy transfer from a moving proton or antiproton to the electrons of an insulating material, LiF. The behavior of the electronic stopping power versus pro jectile velocity displays an effective threshold velocity of ~0.2 a.u. for the proton, consistent with recent experimental observations, and also for the antiproton. The calculated proton/antiproton stopping-power ratio is ~2.4 at velocities slightly above the threshold (v~0.4 a.u.), as compared to the experimental value of 2.1. The projectile energy loss mechanism is observed to be stationary and extremely local.
We present the structure of the fully relaxed (001) surface of the half-metallic manganite La0.7Sr0.3MnO3, calculated using density functional theory within the generalized gradient approximation (GGA). Two relevant ferroelastic order parameters are identified and characterized: The tilting of the oxygen octahedra, which is present in the bulk phase, oscillates and decreases towards the surface, and an additional ferrodistortive Mn off-centering, triggered by the surface, decays monotonically into the bulk. The narrow d-like energy band that is characteristic of unrelaxed manganite surfaces is shifted down in energy by these structural distortions, retaining its uppermost layer localization. The magnitude of the zero-temperature magnetization is unchanged from its bulk value, but the effective spin-spin interactions are reduced at the surface.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا