ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled manipulation of quantum states is central to studying natural and artificial quantum systems. If a quantum system consists of interacting sub-units, the nature of the coupling may lead to quantum levels with degenerate energy differences. This degeneracy makes frequency-selective quantum operations impossible. For the prominent group of transversely coupled two-level systems, i.e. qubits, we introduce a method to selectively suppress one transition of a degenerate pair while coherently exciting the other, effectively creating artificial selection rules. It requires driving two qubits simultaneously with the same frequency and specified relative amplitude and phase. We demonstrate our method on a pair of superconducting flux qubits. It can directly be applied to the other superconducting qubits, and to any other qubit type that allows for individual driving. Our results provide a single-pulse controlled-NOT gate for the class of transversely coupled qubits.
We present experimental results on the crosstalk between two AC-operated dispersive bifurcation detectors, implemented in a circuit for high-fidelity readout of two strongly coupled flux qubits. Both phase-dependent and phase-independent contribution s to the crosstalk are analyzed. For proper tuning of the phase the measured crosstalk is 0.1 % and the correlation between the measurement outcomes is less than 0.05 %. These results show that bifurcative readout provides a reliable and generic approach for multi-partite correlation experiments.
We measure the dispersive energy-level shift of an $LC$ resonator magnetically coupled to a superconducting qubit, which clearly shows that our system operates in the ultrastrong coupling regime. The large mutual kinetic inductance provides a couplin g energy of $approx0.82$~GHz, requiring the addition of counter-rotating-wave terms in the description of the Jaynes-Cummings model. We find a 50~MHz Bloch-Siegert shift when the qubit is in its symmetry point, fully consistent with our analytical model.
We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits driven by microwave pulses. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. The oscillations are observed well above the crossover temperature from thermally activated escape to quantum tunneling for undriven qubits. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations kT becomes larger than the energy level spacing of the qubit. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا