ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on measurements of the Casimir force in a sphere-plane geometry using a cryogenic force microscope to move the force probe in situ over different materials. We show how the electrostatic environment of the interacting surfaces plays an impo rtant role in weak force measurements and can overcome the Casimir force at large distance. After minimizing these parasitic forces, we measure the Casimir force between a gold-coated sphere and either a gold-coated or a heavily doped silicon surface in the 100-400 nm distance range. We compare the experimental data with theoretical predictions and discuss the consequence of a systematic error in the scanner calibration on the agreement between experiment and theory. The relative force over the two surfaces compares favorably with theory at short distance, showing that this Casimir force experiment is sensitive to the dielectric properties of the interacting surfaces.
Interferometric detection of mirror displacements is intrinsically limited by laser shot noise. In practice, however, it is often limited by thermal noise. Here we report on an experiment performed at the liquid helium temperature to overcome the the rmal noise limitation and investigate the effect of classical laser noise on a microlever that forms a Fabry-Perot cavity with an optical fiber. The spectral noise densities show a region of negative contribution of the backaction noise close to the resonance frequency. We interpret this noise reduction as a coherent coupling of the microlever to the laser intensity noise. This optomechanical effect could be used to improve the detection sensitivity as discussed in proposals going beyond the Standard Quantum Limit.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا