ترغب بنشر مسار تعليمي؟ اضغط هنا

The numerous streams in the M31 halo are currently assumed to be due to multiple minor mergers. Here we use the GADGET2 simulation code to test whether M31 could have experienced a major merger in its past history. It results that a 3+/-0.5:1 gaseous rich merger with r(per)=25+/-5 kpc and a polar orbit can explain many properties of M31 and of its halo. The interaction and the fusion may have begun 8.75+/-0.35 Gyr and 5.5 +/-0.5 Gyr ago, respectively. With an almost quiescent star formation history before the fusion we retrieve fractions of bulge, thin and thick disks as well as relative fractions of intermediate age and old stars in both the thick disk and the Giant Stream. The Giant Stream is caused by returning stars from a tidal tail previously stripped from the satellite prior to the fusion. These returning stars are trapped into elliptical orbits or loops for almost a Hubble time period. Large loops are also predicted and they scale rather well with the recently discovered features in the M31 outskirts. We demonstrate that a single merger could explain first-order (intensity and size), morphological and kinematical properties of the disk, thick disk, bulge and streams in the halo of M31, as well as the distribution of stellar ages, and perhaps metallicities. It challenges scenarios assuming one minor merger per feature in the disk (10 kpc ring) or at the outskirts (numerous streams & thick disk). Further constraints will help to properly evaluate the impact of such a major event to the Local Group.
138 - R. Zeng , J. L Wang , L. Lu 2008
Three first order magnetic phase transitions (FOMT) have been detected at TCPr, TNinter and TCinter over the temperature range from 5 K to 340 K at fields up to 9 T in PrMn1.4Fe0.6Ge2, and the magnetocaloric effect (MCE) around these transitions eval uated. The MCE of two FOMT from planar antiferromagnetism (AFl) to c-axis ferromagnetism (Fmc) around 168 K, and from the Fmc state to the c-axis AFmc state around 157 K have acceptable values compared with those of existing MCE systems. A giant magnetocaloric effect (GMCE) has been observed around 25.5 K associated with the field-induced FOMT from the AFmc to the Fmc+F(Pr) state with an additional Pr magnetic contribution. The MCE value 29.1 J/kg K with field change 7 T is comparable to and even larger than reported values for the best-performed MCE materials. In particular, the giant MCE value of 12.3 J/kg K obtained for the relatively small field change from 0 to 1 T is very beneficial for applications, and this, together with the small magnetic and thermal hysteresis, suggests that PrMn1.4Fe0.6Ge2 may be a promising candidate for magnetic refrigeration applications in the hydrogen liquefication temperature range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا