ترغب بنشر مسار تعليمي؟ اضغط هنا

A local dwarf galaxy, NGC 5253, has a young super star cluster that may provide an example of highly efficient star formation. Here we report the detection and imaging, with the Submillimeter Array, of the J= 3-2 rotational transition of CO at the lo cation of the massive cluster associated with the supernebula. The gas cloud is hot, dense, quiescent, and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by Wolf-Rayet stars within the embedded star cluster. Its star formation efficiency exceeds 50%, ten times higher than clouds in the Milky Way: this cloud is a factory of stars and soot. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.
We present observations in the H53alpha line and radio continuum at 43 GHz carried out with the VLA in the D array (2 angular resolution) toward the starburst galaxy NGC 5253. VLA archival data have been reprocessed to produce a uniform set of 2, 1.3 and 0.7 cm high angular (0.2 X 0.1) radio continuum images. The RRL H53alpha, a previously reported measurement of the H92alpha RRL flux density and the reprocessed high angular resolution radio continuum flux densities have been modeled using a collection of HII regions. Based on the models, the ionized gas in the nuclear source has an electron density of ~6 X 10^4 cm^-3 and an volume filling factor of 0.05. A Lyman continuum photon production rate of 2 X 10^52 s^-1 is necessary to sustain the ionization in the nuclear region. The number of required O7 stars in the central 1.5 pc of the supernebula is ~ 2000. The H53alpha velocity gradient 10 km s^-1 arcsec^-1) implies a dynamical mass of ~3X10^5 Msun; this mass suggests the supernebula is confined by gravity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا