ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on analysis of 308.3 hrs of high speed photometry targeting the pulsating DA white dwarf EC14012-1446. The data were acquired with the Whole Earth Telescope (WET) during the 2008 international observing run XCOV26. The Fourier transform of the light curve contains 19 independent frequencies and numerous combination frequencies. The dominant peaks are 1633.907, 1887.404, and 2504.897 microHz. Our analysis of the combination amplitudes reveals that the parent frequencies are consistent with modes of spherical degree l=1. The combination amplitudes also provide m identifications for the largest amplitude parent frequencies. Our seismology analysis, which includes 2004--2007 archival data, confirms these identifications, provides constraints on additional frequencies, and finds an average period spacing of 41 s. Building on this foundation, we present nonlinear fits to high signal-to-noise light curves from the SOAR 4.1m, McDonald 2.1m, and KPNO 2m telescopes. The fits indicate a time-averaged convective response timescale of 99.4 +/- 17 s, a temperature exponent 85 +/- 6.2 and an inclination angle of 32.9 +/- 3.2 degrees. We present our current empirical map of the convective response timescale across the DA instability strip.
We report on the analysis of 436.1 hrs of nearly continuous high-speed photometry on the pulsating DB white dwarf GD358 acquired with the Whole Earth Telescope (WET) during the 2006 international observing run, designated XCOV25. The Fourier transfor m (FT) of the light curve contains power between 1000 to 4000 microHz, with the dominant peak at 1234 microHz. We find 27 independent frequencies distributed in 10 modes, as well as numerous combination frequencies. Our discussion focuses on a new asteroseismological analysis of GD358, incorporating the 2006 data set and drawing on 24 years of archival observations. Our results reveal that, while the general frequency locations of the identified modes are consistent throughout the years, the multiplet structure is complex and cannot be interpreted simply as l=1 modes in the limit of slow rotation. The high k multiplets exhibit significant variability in structure, amplitude and frequency. Any identification of the m components for the high k multiplets is highly suspect. The k=9 and 8 modes typically do show triplet structure more consistent with theoretical expectations. The frequencies and amplitudes exhibit some variability, but much less than the high k modes. Analysis of the k=9 and 8 multiplet splittings from 1990 to 2008 reveal a long-term change in multiplet splittings coinciding with the 1996 sforzando event, where GD358 dramatically altered its pulsation characteristics on a timescale of hours. We explore potential implications, including the possible connections between convection and/or magnetic fields and pulsations. We suggest future investigations, including theoretical investigations of the relationship between magnetic fields, pulsation, growth rates, and convection.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا