ترغب بنشر مسار تعليمي؟ اضغط هنا

The AC susceptibility at zero DC magnetic field of a polycrystalline sample of LaFeAsO_{0.94}F_{0.06} (T_c = 24 K) has been investigated as a function of the temperature, the amplitude of the AC magnetic field (in the range Hac = 0.003 - 4 Oe) and th e frequency (in the range f = 10 kHz - 100 kHz). The temperature dependence of the AC susceptibility exhibits the typical two-step transition arising from the combined response of superconduncting grains and intergranular weak-coupled medium. The intergranular part of the susceptibility strongly depends on both the amplitude and the frequency of the AC driving field, from few Kelvin below T_c down to T = 4.2 K. Our results show that, in the investigated sample, the intergrain critical current is not determined by pinning of Josephson vortices but by Josephson critical current across neighboring grains.
179 - G. F. Chen , W. Z. Hu , J. L. Luo 2009
Specific heat, resistivity, susceptibility and Hall coefficient measurements were performed on high-quality single crystalline Na$_{1-delta}$FeAs. This compound is found to undergo three successive phase transitions at around 52, 41, and 23 K, which correspond to structural, magnetic and superconducting transitions, respectively. The Hall effect result indicates the development of energy gap at low temperature due to the occurrence of spin-density-wave instability. Our results provide direct experimental evidence of the magnetic ordering in the nearly stoichiometric NaFeAs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا