ترغب بنشر مسار تعليمي؟ اضغط هنا

The Adaptive Optics Facility (AOF) project envisages transforming one of the VLT units into an adaptive telescope and providing its ESO (European Southern Observatory) second generation instruments with turbulence corrected wavefronts. For MUSE and H AWK-I this correction will be achieved through the GALACSI and GRAAL AO modules working in conjunction with a 1170 actuators Deformable Secondary Mirror (DSM) and the new Laser Guide Star Facility (4LGSF). Multiple wavefront sensors will enable GLAO and LTAO capabilities, whose performance can greatly benefit from a knowledge about the stratification of the turbulence in the atmosphere. This work, totally based on end-to-end simulations, describes the validation tests conducted on a Cn2 profiler adapted for the AOF specifications. Because an absolute profile calibration is strongly dependent on a reliable knowledge of turbulence parameters r0 and L0, the tests presented here refer only to normalized output profiles. Uncertainties in the input parameters inherent to the code are tested as well as the profiler response to different turbulence distributions. It adopts a correction for the unseen turbulence, critical for the GRAAL mode, and highlights the effects of masking out parts of the corrected wavefront on the results. Simulations of data with typical turbulence profiles from Paranal were input to the profiler, showing that it is possible to identify reliably the input features for all the AOF modes.
127 - P. Martinez , J. Kolb , M. Sarazin 2012
Real-time seeing estimation at the focus of a telescope is nowadays strongly emphasized as this knowledge virtually drives the dimensioning of adaptive optics systems and instrument operational aspects. In this context we study the interest of using active optics Shack-Hartmann (AOSH) sensor images to provide accurate estimate of the seeing. The AOSH practically delivers long exposure spot PSFs -- at the critical location of the telescope focus -- being directly related to the atmospheric seeing in the line of sight. Although AOSH sensors are not specified to measure spot sizes but slopes, we show that accurate seeing estimation from AOSH images can be obtained with a dedicated algorithm. The sensitivity and comparison of two algorithms to various parameters is analyzed in a systematic way, demonstrating that efficient estimation of the seeing can be obtained by adequate means.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا