ترغب بنشر مسار تعليمي؟ اضغط هنا

Comet P/2010A2 LINEAR is a good candidate for membership with the Main Belt Comet family. It was observed with several telescopes (ESO NTT, La Silla; Gemini North, Mauna Kea; UH 2.2m, Mauna Kea) from 14 Jan. until 19 Feb. 2010 in order to characteriz e and monitor it and its very unusual dust tail, which appears almost fully detached from the nucleus; the head of the tail includes two narrow arcs forming a cross. The immediate surroundings of the nucleus were found dust-free, which allowed an estimate of the nucleus radius of 80-90m. A model of the thermal evolution indicates that such a small nucleus could not maintain any ice content for more than a few million years on its current orbit, ruling out ice sublimation dust ejection mechanism. Rotational spin-up and electrostatic dust levitations were also rejected, leaving an impact with a smaller body as the favoured hypothesis, and ruling out the cometary nature of the object. The impact is further supported by the analysis of the tail structure. Finston-Probstein dynamical dust modelling indicates the tail was produced by a single burst of dust emission. More advanced models, independently indicate that this burst populated a hollow cone with a half-opening angle alpha~40degr and with an ejection velocity v_max ~ 0.2m/s, where the small dust grains fill the observed tail, while the arcs are foreshortened sections of the burst cone. The dust grains in the tail are measured to have radii between a=1-20mm, with a differential size distribution proportional to a^(-3.44 +/- 0.08). The dust contained in the tail is estimated to at least 8x10^8kg, which would form a sphere of 40m radius. Analysing these results in the framework of crater physics, we conclude that a gravity-controlled crater would have grown up to ~100m radius, i.e. comparable to the size of the body. The non-disruption of the body suggest this was an oblique impact.
The seven known main belt comets (MBCs) have orbital characteristics of main belt asteroids yet exhibit dust ejection like comets. In order to constrain their physical and orbital properties we searched the Thousand Asteroid Light Curve Survey (TALCS ; Masiero et al. 2009) for additional candidates using two diagnostics: tail and coma detection. This was the most sensitive MBC survey effort to date, extending the search from MBCs with H~18 (D~1 km) to H~21 (D~150 m). We fit each of the 924 TALCS objects to a PSF model incorporating both a coma and nuclear component to measure the fractional contribution of the coma to the total surface brightness. We determined the significance of the coma detection using the same algorithm on a sample of comparable null detections. We did not identify any MBC candidates with this technique to a sensitivity limit on the order of cometary mass loss rate of about 0.1 kg/s. Our tail detection algorithm identified statistically significant flux in a segmented annulus around the candidate object. We show that the technique can detect tail activity throughout the asteroid belt to the level of the currently known MBCs. Although we did not identify any MBC candidates with this technique, we find a statistically significant detection of faint activity in the entire ensemble of TALCS asteroids. This suggests that many main belt asteroids are active at very low levels. We set 90% upper confidence limits on the number distribution of MBCs as a function of absolute magnitude, semimajor axis, eccentricity, and inclination. There are <~ 400000 MBCs in the main belt brighter than H_V=21 (~150 m) and the MBC:MBA ratio is <~ 1:400. We further comment on the ability of observations to meaningfully constrain the snow lines location. Under some reasonable and simple assumptions we claim 85% confidence that the contemporary snow line lies beyond 2.5 AU.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا