ترغب بنشر مسار تعليمي؟ اضغط هنا

The observation of intrinsic magnetic order in graphene and graphene-based materials relies on the formation of magnetic moments and a sufficiently strong mutual interaction. Vacancies are arguably considered the primary source of magnetic moments. H ere we present an in-depth density functional theory study of the spin-resolved electronic structure of (monoatomic) vacancies in graphene and bilayer graphene. We use two different methodologies: supercell calculations with the SIESTA code and cluster-embedded calculations with the ALACANT package. Our results are conclusive: The vacancy-induced extended $pi$ magnetic moments, which present long-range interactions and are capable of magnetic ordering, vanish at any experimentally relevant vacancy concentration. This holds for $sigma$-bond passivated and un-passivated reconstructed vacancies, although, for the un-passivated ones, the disappearance of the $pi$ magnetic moments is accompanied by a very large magnetic susceptibility. Only for the unlikely case of a full $sigma$-bond passivation, preventing the reconstruction of the vacancy, a full value of 1$mu_B$ for the $pi$ extended magnetic moment is recovered for both mono and bilayer cases. Our results put on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in graphene-based systems, while still leaving the door open to $sigma$-type paramagnetism.
102 - J. J. Palacios 2010
It is a fact that the minimal conductivity $sigma_0$ of most graphene samples is larger than the well-established universal value for ideal graphene $4e^2/pi h$; in particular, larger by a factor $gtrsimpi$. Despite intense theoretical activity, this fundamental issue has eluded an explanation so far. Here we present fully atomistic quantum mechanical estimates of the graphene minimal conductivity where electron-electron interactions are considered in the framework of density functional theory. We show the first conclusive evidence of the dominant role on the minimal conductivity of charged impurities over ripples, which have no visible effect. Furthermore, in combination with the logarithmic scaling law for diffusive metallic graphene, we ellucidate the origin of the ubiquitously observed minimal conductivity in the range $8e^2/h > sigma_0 gtrsim 4e^2/h$.
We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without localized states, like chemically pure break junctions, large AMR only occurs if the orbital polarization of the current is large, regardless of the anisotropy of the density of states. In systems that display localized states close to the Fermi energy, like a single electron transistor with ferromagnetic electrodes, large AMR is related to the variation of the Fermi energy as a function of the magnetization direction.
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. Using a mean field Hubbard model, we study the appearance of magnetic textures associated to removing a single atom (vacancy) an d multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based upon Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin $S$ of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance there is maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of gaussian basis sets, commonly used in first-principles codes. The possi ble usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zig-zag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene subla ttices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin, $S$, consistent with Liebs theorem for bipartite lattices. Triangles have a finite $S$ for all sizes whereas hexagons have S=0 and develop local moments above a critical size of $approx 1.5$ nm.
The observed performances of carbon nanotube field effect transistors are examined using first-principles quantum transport calculations. We focus on the nature and role of the electrical contact of Au and Pd electrodes to open-ended semiconducting n anotubes, allowing the chemical contact at the surface to fully develop through large-scale relaxation of the contacting atomic configuration. We present the first direct numerical evidence of Pd contacts exhibiting perfect transparency for hole injection as opposed to that of Au contacts. Their respective Schottky barrier heights, on the other hand, turn out to be fairly similar for realistic contact models. These findings are in general agreement with experimental data reported to date, and show that a Schottky contact is not merely a passive ohmic contact but actively influences the device I-V behavior.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا