ترغب بنشر مسار تعليمي؟ اضغط هنا

The behavior of the low-frequency electromagnon in multiferroic DyMnO3 has been investigated in external magnetic fields and in a magnetically ordered state. Significant softening of the electromagnon frequency is observed for external magnetic field s parallel to the a-axis (BIIa), revealing a number of similarities to a classical soft mode behavior known for ferroelectric phase transitions. The softening of the electromagnon yields an increase of the static dielectric permittivity which follows a similar dependence as predicted by the Lyddane-Sachs-Teller relation. Within the geometry BIIb the increase of the electromagnon intensity does not correspond to the softening of the eigenfrequency. In this case the increase of the static dielectric permittivity seem to be governed by the motion of the domain walls.
We present a detailed dielectric study of the relaxation effects that occur in several perovskite rare-earth manganites, including the multiferroics TbMnO3 and DyMnO3. We demonstrate that the strong magnetocapacitive effects, observed for electrical fields E||c, are nearly completely governed by magnetic-state induced changes of the relaxation parameters. The multiferroic materials, which undergo a transition into a spiral magnetic state, show qualitatively different relaxation behavior than those compounds transferring into an A-type antiferromagnetic state. We ascribe the relaxations in both cases to the off-center motion of the manganese ions, which in the multiferroic systems also leads to the ferroelectric ordering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا