ترغب بنشر مسار تعليمي؟ اضغط هنا

We report thermopower ($S$) and electrical resistivity ($rho_{2DES}$) measurements in low-density (10$^{14}$ m$^{-2}$), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temp eratures $lesssim$ 0.7 K a linearly growing $S$ as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: i) the magnitude of $S$ exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and ii) $rho_{2DES}$ in this regime is two orders of magnitude greater than the quantum of resistance $h/e^2$ and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, $rho_{2DES}$ and $S$ show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا