ترغب بنشر مسار تعليمي؟ اضغط هنا

The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Mode l prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.
85 - J. Grange 2015
Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and mod ern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.
High-quality charged current quasielastic scattering data have recently been reported for both muon neutrinos and antineutrinos from several accelerator-based neutrino experiments. Measurements from MiniBooNE were the first to indicate that more comp lex nuclear effects, now thought to be the result of nucleon pair correlations, may contribute to neutrino quasielastic samples at a much higher significance than previously assumed. These findings are now being tested by MINER$ u$A and other contemporary neutrino experiments. Presented here is a comparison of data from MiniBooNE and MINER$ u$A to a few example parametrizations of these nuclear effects. It has been demonstrated that such effects may bias future measurements of neutrino oscillation parameters and so this issue continues to press the neutrino community. A comparison of data over a large range of neutrino energies is one approach to exploring the extent to which such nucleon correlations may influence our understanding and subsequent modeling of neutrino quasielastic scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا