ترغب بنشر مسار تعليمي؟ اضغط هنا

The 8He(d,p) reaction was studied in inverse kinematics at 15.4A MeV using the MUST2 Si-CsI array in order to shed light on the level structure of 9He. The well known 16O(d,p)17O reaction, performed here in reverse kinematics, was used as a test to v alidate the experimental methods. The 9He missing mass spectrum was deduced from the kinetic energies and emission angles of the recoiling protons. Several structures were observed above the neutron-emission threshold and the angular distributions were used to deduce the multipolarity of the transitions. This work confirms that the ground state of 9He is located very close to the neutron threshold of 8He and supports the occurrence of parity inversion in 9He.
61 - J. Gibelin 2007
Coulomb excitation of the exotic neutron-rich nucleus $^{26}$Ne on a $^{nat}$Pb target was measured at 58 A.MeV in order to search for low-lying E1 strength above the neutron emission threshold. Data were also taken on an $^{nat}$Al target to estimat e the nuclear contribution. The radioactive beam was produced by fragmentation of a 95 A.MeV $^{40}$Ar beam delivered by the RIKEN Research Facility. The set-up included a NaI gamma-ray array, a charged fragment hodoscope and a neutron wall. Using the invariant mass method in the $^{25}$Ne+n channel, we observe a sizable amount of E1 strength between 6 and 10 MeV. The reconstructed $^{26}$Ne angular distribution confirms its E1 nature. A reduced dipole transition probability of B(E1)=0.49$pm$0.16 $e^2fm^2$ is deduced. For the first time, the decay pattern of low-lying strength in a neutron-rich nucleus is obtained. The results are discussed in terms of a pygmy resonance centered around 9 MeV.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا