ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a combined experimental and computational method which enables the precise determination of the atomic positions in a thin film using CuK{alpha} radiation, only. The capabilities of this technique surpass simple structure refinement and al low solving unknown phases stabilized by substrate-induced stress. We derive the appropriate corrections to transform the measured integrated intensities into structure factors. Data collection was performed entirely on routinely available laboratory diffractometers (CuK{alpha} radiation); the subsequent analysis was carried out by single-crystal direct methods ({delta} recycling procedure) followed by the least-squares refinement of the structural parameters of the unit cell content. We selected an epitaxial thin film of CuMnAs grown on top of a GaAs substrate, which formed a crystal structure with tetragonal symmetry, differing from the bulk material which is orthorhombic. Here we demonstrate the new tetragonal form of epitaxial CuMnAs grown on GaAs substrate and present consistent high-resolution scanning transmission electron microscopy and stoichiometry analyses.
The discovery that the interface between two band gap insulators LaAlO3 and SrTiO3 is highly conducting has raised an enormous interest in the field of oxide electronics. The LAlO3/SrTiO3 interface can be tuned using an electric field and switched fr om a superconducting to an insulating state. Conducting paths in an insulating background can be written applying a voltage with the tip of an atomic force microscope, creating great promise for the development of a new generation of nanoscale electronic devices. However, the mechanism for interface conductivity in LaAlO3/SrTiO3 has remained elusive. The theoretical explanation based on an intrinsic charge transfer (electronic reconstruction) has been strongly challenged by alternative descriptions based on point defects. In this work, thanks to modern aberration-corrected electron probes with atomic-scale spatial resolution, interfacial charge and atomic displacements originating the electric field within the system can be simultaneously measured, yielding unprecedented experimental evidence in favor of an intrinsic electronic reconstruction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا