ترغب بنشر مسار تعليمي؟ اضغط هنا

We present data on the electrical transport properties of highly-doped silicon-on-insulator quantum dots under the effect of pulsed magnetic fields up to 48 T. At low field intensities, B<7 T, we observe a strong modification of the conductance due t o the destruction of weak localization whereas at higher fields, where the magnetic field length becomes comparable to the effective Bohr radius of phosphorous in silicon, a strong decrease in conductance is demonstrated. Data in the high and low electric field bias regimes are then compared to show that close to the Coulomb blockade edge magnetically-induced quenching to single donors in the quantum dot is achieved at about 40 T.
We use both Quantum Hall and Shubnikov de Haas experiments at high magnetic field and low temperature to analyse broadening processes of Landau levels in a delta-doped 2D quantum well superlattice and a 1D quantum wire superlattice generated from the first one by controlled dislocation slips. We deduce first the origin of the broadening from the damping factor in the Shubnikov de Haas curves in various configurations of the magnetic field and the measured current for both kinds of superlattice. Then, we write a general formula for the resistivity in the Quantum Hall effect introducing a dephasing factor we link to the process of localization.
Quantum wire superlattices (1D) realized by controlled dislocation slipping in quantum well superlattices (2D) (atomic saw method) have already shown magnetophonon oscillations. This effect has been used to investigate the electronic properties of su ch systems and prove the quantum character of the physical properties of the wires. By cooling the temperature and using pulsed magnetic field up to 35 T, we have observed both quantum Hall effect (QHE) and Shubnikov de Haas (SdH) oscillations for various configurations of the magnetic field. The effective masses deduced from the values of the fundamental fields are coherent with those obtained with magnetophonon effect. The field rotation induces a change in the resonance frequencies due to the modification of the mass tensor as in a (3D) electron gas. In view the QHE, the plateaus observed in rho_yz are dephased relatively to rho_zz minima which seems to be linked to the dephasing of the minima of the density of states of the broadened Landau levels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا