ترغب بنشر مسار تعليمي؟ اضغط هنا

267 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The misfit oxide, Bi$_{2}$Ba$_{1.3}$K$_{0.6}$Co$_{2.1}$O$_{y}$, made of alternating rocksalt-structured [BiO/BaO] layers and hexagonal CoO$_{2}$ layers, was studied by angle-resolved photoemission spectroscopy. Detailed electronic structure of such a highly strained oxide interfaces is revealed for the first time. We found that under the two incommensurate crystal fields, electrons are confined within individual sides of the interface, and scattered by umklapp scattering of the crystal field from the other side. In addition, the high strain on the rocksalt layer raises its chemical potential and induces large charge transfer to the CoO$_{2}$ layer. Furthermore, a novel interface effects, the interfacial enhancement of electron-phonon interactions, is discovered. Our findings of these electronic properties lay a foundation for designing future functional oxide interfaces.
278 - H. W. Ou , Y. Zhang , J. F. Zhao 2008
We investigated the temperature dependence of the density-of-states in the iron-based superconductor SmO_1-xF_xFeAs (x=0, 0.12, 0.15, 0.2) with high resolution angle-integrated photoemission spectroscopy. The density-of-states suppression is observed with decreasing temperature in all samples, revealing two characteristic energy scales (10meV and 80meV). However, no obvious doping dependence is observed. We argue that the 10meV suppression is due to an anomalously doping-independent normal state pseudogap, which becomes the superconducting gap once in the superconducting state; and alert the possibility that the 80meV-scale suppression might be an artifact of the polycrystalline samples.
115 - H. W. Ou , J. F. Zhao , Y. Zhang 2008
The electronic structure of the new superconductor, SmO$_{1-x}$F$_x$FeAs ($x=0.15$), has been studied by angle-integrated photoemission spectroscopy. Our data show a sharp feature very close to the Fermi energy, and a relative flat distribution of th e density of states between 0.5 eV and 3 eV binding energy, which agrees best with band structure calculations considering an antiferromagnetic ground state. No noticeable gap opening was observed at 12 Kelvin below the superconducting transition temperature, indicating the existence of large ungapped regions in the Brillouin zone.
79 - J. F. Zhao , H. W. Ou , G. Wu 2006
The electronic structure of a new charge-density-wave/ superconductor system, 1T-CuxTiSe2, has been studied by photoemission spectroscopy. A correlated semiconductor band structure is revealed for the undoped case. With Cu doping, the charge density wave is suppressed by the raising of the chemical potential, while the superconductivity is enhanced by the enhancement of the density of states. Moreover, the strong scattering at high doping might be responsible for the suppression of superconductivity in that regime.
Charge density wave, or CDW, is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of CDW are realized in very anomalou s ways due to the strong-coupling nature of the electronic structure. Namely, the CDW gap is only partially open, and charge density wavevector match is fulfilled through participation of states of the large Fermi patch, while the straight FS sections have secondary or negligible contributions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا