ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we gen erate a carrier temperature gradient that results in a measurable thermoelectric voltage VNL across the remaining (detector) leads. Due to the nonlocal character of the measurement, VNL is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and VNL, VNL ~ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying VNL as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport.
We report on electric-field and temperature dependent transport measurements in exfoliated thin crystals of Bi$_{2}$Se$_{3}$ topological insulator. At low temperatures ($< 50$ K) and when the chemical potential lies inside the bulk gap, the crystal r esistivity is strongly temperature dependent, reflecting inelastic scattering due to the thermal activation of optical phonons. A linear increase of the current with voltage is obtained up to a threshold value at which current saturation takes place. We show that the activated behavior, the voltage threshold and the saturation current can all be quantitatively explained by considering a single optical phonon mode with energy $hbar Omega approx 8$ meV. This phonon mode strongly interacts with the surface states of the material and represents the dominant source of scattering at the surface at high electric fields.
Spin transfer driven excitations in magnetic nanostructures are characterized by a relatively large microwave emission linewidth (10 -100 MHz). Here we investigate the role of thermal fluctuations as well as of the non-linear amplitude-phase coupling parameter and the amplitude relaxation rate to explain the linewidth broadening of in-plane precession modes induced in planar nanostructures. Experiments on the linewidth broadening performed on MgO based magnetic tunnel junctions are compared to the linewidth obtained from macrospin simulations and from evaluation of the phase variance. In all cases we find that the linewidth varies linearly with temperature when the amplitude relaxation rate is of the same order as the linewidth and when the amplitude-phase coupling parameter is relatively small. The small amplitude-phase coupling parameter means that the linewidth is dominated by direct phase fluctuations and not by amplitude fluctuations, explaining thus its linear dependence as a function of temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا