ترغب بنشر مسار تعليمي؟ اضغط هنا

The fusion cross sections of radioactive $^{134}$Te + $^{40}$Ca were measured at energies above and below the Coulomb barrier. The evaporation residues produced in the reaction were detected in a zero-degree ionization chamber providing high efficien cy for inverse kinematics. Both coupled-channel calculations and comparison with similar Sn+Ca systems indicate an increased sub-barrier fusion probability that is correlated with the presence of positive Q-value neutron transfer channels. In comparison, the measured fusion excitation functions of $^{130}$Te + $^{58,64}$Ni, which have positive Q-value neutron transfer channels, were accurately reproduced by coupled-channel calculations including only inelastic excitations. The results demonstrate that the coupling of transfer channels can lead to enhanced sub-barrier fusion but this is not directly correlated with positive Q-value neutron transfer channels in all cases.
Evaporation residue and fission cross sections of radioactive $^{132}$Sn on $^{64}$Ni were measured near the Coulomb barrier. A large sub-barrier fusion enhancement was observed. Coupled-channel calculations including inelastic excitation of the proj ectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in $^{132}$Sn+$^{64}$Ni with respect to stable Sn+$^{64}$Ni. A systematic comparison of evaporation residue cross sections for the fusion of even $^{112-124}$Sn and $^{132}$Sn with $^{64}$Ni is presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا