ترغب بنشر مسار تعليمي؟ اضغط هنا

138 - Z. Sun , Q. Wang , J. F. Douglas 2013
Using angle-resolved photoemission spectroscopy (ARPES), we investigate the electronic band structure and Fermi surface of ferromagnetic La$_{2-2x}$Sr$_{1+2x}$Mn$_2$O$_7$ ($x=0.38$). Besides the expected two hole pockets and one electron pocket of ma jority-spin $e_g$ electrons, we show an extra electron pocket around the $Gamma$ point. A comparison with first-principles spin-polarized band-structure calculations shows that the extra electron pocket arises from $t_{2g}$ electrons of minority-spin character, indicating this compound is not a complete half-metallic ferromagnet, with similar expectations for lightly-doped cubic manganites. However, our data suggest that a complete half-metallic state is likely to be reached as long as the bandwidth is mildly reduced. Moreover, the band-resolved capability of ARPES enables us to investigate the band structure effects on spin polarization for different experimental conditions.
60 - Z. Sun , Q. Wang , J. F. Douglas 2009
In correlated electron systems such as cuprate superconductors and colossal magnetoresistive (CMR) oxides there is often a tendency for a nanoscale self-organization of electrons that can give rise to exotic properties and to extreme non-linear respo nses. The driving mechanisms for this self-organization are highly debated, especially in the CMR oxides in which two types of self-organized stripes of charge and orbital order coexist with each other. By utilizing angle-resolved photoemission spectroscopy measurements over a wide doping range, we show that one type of stripe is exclusively linked to long flat portions of nested Fermi surface, while the other type prefers to be commensurate with the real space lattice but also may be driven away from this by the Fermi surface. Complementarily, the Fermi surface also appears to be driven away from its non-interacting value at certain doping levels, giving rise to a host of unusual electronic properties.
Angle-resolved photoemission spectroscopy with low-energy tunable photons along the nodal direction of oxygen isotope substituted Bi2Sr2CaCu2O8+delta reveals a distinct oxygen isotope shift near the electron-boson coupling kink in the electronic disp ersion. The magnitude (a few meV) and direction of the kink shift are as expected due to the measured isotopic shift of phonon frequency, which are also in agreement with theoretical expectations. This demonstrates the participation of the phonons as dominant players, as well as pinpointing the most relevant of the phonon branches.
A laser-based angle resolved photoemission (APRES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate, while reducing extrinsic background and surface sensitivity relative to higher energy light sources. In this review, the optical system is described, and special experimental considerations for low-energy ARPES are discussed. The calibration of the hemispherical electron analyzer for good low-energy angle-mode performance is also described. Finally, data from the heavily studied high T_c superconductor Bi2Sr2CaCu2O8+delta (Bi2212) is compared to the results from higher photon energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا