ترغب بنشر مسار تعليمي؟ اضغط هنا

Our goal is to see how density waves of different scale combine to form voids between galaxy systems of various scale. We perform numerical simulations of structure formation in cubes of size 100 and 256 Mpc/h, with resolutions 256^3 and 512^3 partic les and cells. To understand the role of density perturbations of various scale we cut power spectra at scales from 8 to 128 Mpc/h, using in all series identical initial random realisations. We find that small haloes and short filaments form all over the simulation box, if perturbations only up to scale 8 Mpc/h are present. The phenomenon of large multi-scale voids in the cosmic web requires the presence of an extended spectrum of primordial density perturbations. The void phenomenon is due to the action of two processes: the synchronisation of density perturbations of medium and large scales, and the suppression of galaxy formation in low-density regions by the combined action of negative sections of medium- and large-scale density perturbations, so that their densities are less than the mean density, and thus during the evolution their densities decrease.
We follow the evolution of galaxy systems in numerical simulation. Our goal is to understand the role of density perturbations of various scales in the formation and evolution of the cosmic web. We perform numerical simulations with the full power sp ectrum of perturbations, and with spectrum cut at long wavelengths. Additionally, we have one model, where we cut the intermediate waves. We analyze the density field and study the void sizes and density field clusters in different models. Our analysis shows that the fine structure (groups and clusters of galaxies) is created by small-scale density perturbations of scale $leq 8$ Mpc. Filaments of galaxies and clusters are created by perturbations of intermediate scale from $sim 8$ to $sim 32$ Mpc, superclusters of galaxies by larger perturbations. We conclude that the scale of the pattern of the cosmic web is determined by density perturbations of scale up to $sim 100$ Mpc. Larger perturbations do not change the pattern of the web, but modulate the richness of galaxy systems, and make voids emptier. The stop of the increase of the scale of the pattern of the cosmic web with increasing scale of density perturbations can probably be explained as the freezing of the web at redshift $zsimeq 0.7$.
115 - J. Einasto , G. Hutsi , E. Saar 2010
According to the modern cosmological paradigm galaxies and galaxy systems form from tiny density perturbations generated during the very early phase of the evolution of the Universe. Using numerical simulations we study the evolution of phases of den sity perturbations of different scales to understand the formation and evolution of the cosmic web. We apply the wavelet analysis to follow the evolution of high-density regions (clusters and superclusters) of the cosmic web. We show that the positions of maxima and minima of density waves (their spatial phases) almost do not change during the evolution of the structure. Positions of extrema of density perturbations are the more stable, the larger is the wavelength of perturbations. Combining observational and simulation data we conclude that the skeleton of the cosmic web was present already in an early stage of structure evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا