ترغب بنشر مسار تعليمي؟ اضغط هنا

During an extensive multiwavelength campaign that we performed in 2013-14 the prototypical Seyfert 1 galaxy NGC 5548 has been found in an unusual condition of heavy and persistent obscuration. The newly discovered obscurer absorbs most of the soft X- ray continuum along our line of sight and lowers the ionizing luminosity received by the classical warm absorber. Here we present the analysis of the high resolution X-ray spectra collected with XMM-Newton and Chandra throughout the campaign, which are suitable to investigate the variability of both the obscurer and the classical warm absorber. The time separation between these X-ray observations range from 2 days to 8 months. On these timescales the obscurer is variable both in column density and in covering fraction. This is consistent with the picture of a patchy wind. The most significant variation occurred in September 2013 when the source brightened for two weeks. A higher and steeper intrinsic continuum and a lower obscurer covering fraction are both required to explain the spectral shape during the flare. We suggest that a geometrical change of the soft X-ray source behind the obscurer cause the observed drop in the covering fraction. Due to the higher soft X-ray continuum level the September 2013 Chandra spectrum is the only X ray spectrum of the campaign where individual features of the warm absorber could be detected. The spectrum shows absorption from Fe-UTA, ion{O}{iv}, and ion{O}{v}, consistent to belong to the lower-ionization counterpart of the historical NGC 5548 warm absorber. Hence, we confirm that the warm absorber has responded to the drop in the ionizing luminosity caused by the obscurer.
165 - J.S. Kaastra , J. Ebrero , N. Arav 2014
We present in this paper the results of a 270 ks Chandra HETGS observation in the context of a large multiwavelength campaign on the Seyfert galaxy Mrk 509. The HETGS spectrum allows us to study the high ionisation warm absorber and the Fe-K complex in Mrk 509. We search for variability in the spectral properties of the source with respect to previous observations in this campaign, as well as for evidence of ultra-fast outflow signatures. The Chandra HETGS X-ray spectrum of Mrk 509 was analysed using the SPEX fitting package. We confirm the basic structure of the warm absorber found in the 600 ks XMM-Newton RGS observation observed three years earlier, consisting of five distinct ionisation components in a multikinematic regime. We find little or no variability in the physical properties of the different warm absorber phases with respect to previous observations in this campaign, except for component D2 which has a higher column density at the expense of component C2 at the same outflow velocity (-240 km/s). Contrary to prior reports we find no -700 km/s outflow component. The O VIII absorption line profiles show an average covering factor of 0.81 +/- 0.08 for outflow velocities faster than -100 km/s, similar to those measured in the UV. This supports the idea of a patchy wind. The relative metal abundances in the outflow are close to proto-solar. The narrow component of the Fe Kalpha emission line shows no changes with respect to previous observations which confirms its origin in distant matter. The narrow line has a red wing that can be interpreted to be a weak relativistic emission line. We find no significant evidence of ultra-fast outflows in our new spectrum down to the sensitivity limit of our data.
We present the results of a recent (March 2011) 160 ks Chandra-LETGS observation of the Seyfert galaxy NGC 4593, and the analysis of archival X-ray and UV spectra taken with XMM-Newton and HST/STIS in 2002. We find evidence of a multi-component warm absorber (WA) in the X-rays with four distinct ionisation degrees (log xi = 1.0, log xi = 1.7, log xi = 2.4, and log xi = 3.0) outflowing at several hundreds of km/s. In the UV we detect 15 kinematic components in the absorbers, blueshifted with respect to the systemic velocity of the source, ranging from -60 km/s to -1520 km/s. Although the predicted CIV and NV column densities from the low-ionisation X-ray outflow are in agreement with those measured for some components in the STIS spectrum, there are kinematic discrepancies that may prevent both the X-ray and UV absorbers from originating in the same intervening gas. We derive upper limits on the location of the absorbers finding that the high-ionisation gas lie within ~6 - 29 pc from the central ionising source, while the low-ionisation gas is located at several hundreds of pc. This is consistent with our line of sight passing through different parts of a stratified wind. The total kinetic energy of the outflows injected into the surroundings of the host galaxy only accounts for a tiny fraction of the bolometric luminosity of the source, and it is therefore unlikely that they may cause a significant impact in the interstellar medium of NGC 4593 in a given single episode of activity.
We present a study of the complex absorbed X-ray spectrum of the Narrow Line Seyfert 1 galaxy NGC 7314. We collected available public X-ray data from the archives of XMM-Newton, Suzaku, and ASCA. The spectra were analyzed using the fitting package SP EX. We find evidence of intrinsic neutral and ionized absorption in the XMM-Newton EPIC-pn spectrum. The ionized gas presents three significantly distinct ionization phases, although its kinematic properties could not be disentangled. At least two of these phases are also detected in the RGS spectrum, although with less significance due to the low statistics. The ASCA and Suzaku spectra show larger neutral absorption but no ionized gas signatures. The Fe Kalpha emission line is detected in all the observations and, additionally, Fe XXVI in the EPIC-pn spectrum, and Fe Kbeta in the Suzaku XIS spectrum. Using this observational evidence we construct a consistent picture of the geometry of the system in the context of the unified model of active galactic nuclei. The different observational properties are thus interpreted as clouds of neutral gas moving across our line of sight, which would be grazing a clumpy dusty torus.
We present here the results of a 180 ks Chandra-LETGS observation as part of a large multi-wavelength campaign on Mrk 509. We study the warm absorber in Mrk 509 and use the data from a simultaneous HST-COS observation in order to assess whether the g as responsible for the UV and X-ray absorption are the same. We analyzed the LETGS X-ray spectrum of Mrk 509 using the SPEX fitting package. We detect several absorption features originating in the ionized absorber of the source, along with resolved emission lines and radiative recombination continua. The absorption features belong to ions with, at least, three distinct ionization degrees. The lowest ionized component is slightly redshifted (v = +73 km/s) and is not in pressure equilibrium with the others, and therefore it is not likely part of the outflow, possibly belonging to the interstellar medium of the host galaxy. The other components are outflowing at velocities of -196 and -455 km/s, respectively. The source was observed simultaneously with HST-COS, finding 13 UV kinematic components. At least three of them can be kinematically associated with the observed X-ray components. Based on the HST-COS results and a previous FUSE observation, we find evidence that the UV absorbing gas might be co-located with the X-ray absorbing gas and belong to the same structure.
We present the angular correlation function of the X-ray population of 1063 XMM-Newton observations at high Galactic latitudes, comprising up to ~30000 sources over a sky area of ~125 sq. degrees in the energy bands: soft (0.5-2 keV) and hard (2-10 k eV). This is the largest sample of serendipitous X-ray sources ever used for clustering analysis purposes to date and the results have been determined with unprecedented accuracy. We detect significant clustering signals in the soft and hard bands (~10 sigma and ~5 sigma, respectively). We deproject the angular correlation function via Limbers equation and calculate the typical spatial lengths. We infer that AGN at redshifts ~1 are embedded in dark matter halos with typical masses of log M ~ 12.6/h Msol and lifetimes in the range ~3-5 x 10^8 years, which indicates that AGN activity is a transient phase in the life of galaxies.
In this paper we present the two-point angular correlation function of the X-ray source population of 1063 XMM-Newton observations at high Galactic latitudes, comprising up to ~30000 sources over a sky area of 125.5 sq. deg, in three energy bands: 0. 5-2 (soft), 2-10 (hard), and 4.5-10 (ultrahard) keV. We have measured the angular clustering of our survey and find significant positive clustering signals in the soft and hard bands, and a marginal clustering detection in the ultrahard band. We find dependency of the clustering strength on the flux limit and no significant differences in the clustering properties between sources with high hardness ratios and those with low hardness ratios. Our results show that obscured and unobscured objects share similar clustering properties and therefore they both reside in similar environments, in agreement with the unified model of AGN. We deprojected the angular clustering parameters via Limbers equation to compute their typical spatial lengths. From that we have inferred the typical mass of the dark matter haloes in which AGN at redshifts of ~1 are embedded. The short AGN lifetimes derived suggest that AGN activity might be a transient phase that can be experienced several times by a large fraction of galaxies throughout their lives.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا