ترغب بنشر مسار تعليمي؟ اضغط هنا

The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an ar cminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB B-mode polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inflationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of inflation. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: single-moded feedhorns with low cross-polarization, bolometer pairs well-matched to difference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.
416 - K. S. Scott 2008
We present a 1.1 mm wavelength imaging survey covering 0.3 sq. deg. in the COSMOS field. These data, obtained with the AzTEC continuum camera on the James Clerk Maxwell Telescope (JCMT), were centred on a prominent large-scale structure over-density which includes a rich X-ray cluster at z = 0.73. A total of 50 millimetre galaxy candidates, with a significance ranging from 3.5-8.5 sigma, are extracted from the central 0.15 sq. deg. area which has a uniform sensitivity of 1.3 mJy/beam. Sixteen sources are detected with S/N > 4.5, where the expected false-detection rate is zero, of which a surprisingly large number (9) have intrinsic (de-boosted) fluxes > 5 mJy at 1.1 mm. Assuming the emission is dominated by radiation from dust, heated by a massive population of young, optically-obscured stars, then these bright AzTEC sources have FIR luminosities > 6 x 10^12 L(sun) and star formation-rates > 1100 M(sun)/yr. Two of these nine bright AzTEC sources are found towards the extreme peripheral region of the X-ray cluster, whilst the remainder are distributed across the larger-scale over-density. We describe the AzTEC data reduction pipeline, the source-extraction algorithm, and the characterisation of the source catalogue, including the completeness, flux de-boosting correction, false-detection rate and the source positional uncertainty, through an extensive set of Monte-Carlo simulations. We conclude with a preliminary comparison, via a stacked analysis, of the overlapping MIPS 24 micron data and radio data with this AzTEC map of the COSMOS field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا