ترغب بنشر مسار تعليمي؟ اضغط هنا

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1 N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02M_Sun (~ 20 M_Jup). The SM1 condensation is consistent with a nearly-symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated, and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold centre of the condensation. We propose that SM1 is protostellar, and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data reveal observationally the earliest stages of the formation of circumstellar accretion regions, and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.
$tau$ Ceti is a nearby, mature G-type star very similar to our Sun, with a massive Kuiper Belt analogue (Greaves et al. 2004) and possible multiplanet system (Tuomi et al. 2013) that has been compared to our Solar System. We present Herschel Space Ob servatory images of the debris disk, finding the disk is resolved at 70 and 160 microns, and marginally resolved at 250 microns. The Herschel images and infrared photometry from the literature are best modelled using a wide dust annulus with an inner edge between 1-10 AU and an outer edge at ~55 AU, inclined from face-on by 35$pm$10 degrees, and with no significant azimuthal structure. We model the proposed tightly-packed planetary system of five super-Earths and find that the innermost dynamically stable disk orbits are consistent with the inner edge found by the observations. The photometric modelling, however, cannot rule out a disk inner edge as close to the star as 1 AU, though larger distances produce a better fit to the data. Dynamical modelling shows that the 5 planet system is stable with the addition of a Neptune or smaller mass planet on an orbit outside 5 AU, where the Tuomi et al. analysis would not have detected a planet of this mass.
We use PACS and SPIRE continuum data at 160 um, 250 um, 350 um, and 500 um from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC348, L1448, L1455, and NGC1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 um as well as archival Spitzer catalogues and SCUBA 850 um photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.
We present the various science cases for building Band 1 receivers as part of ALMAs ongoing Development Program. We describe the new frequency range for Band 1 of 35-52 GHz, a range chosen to maximize the receiver suites scientific impact. We first d escribe two key science drivers: 1) the evolution of grains in protoplanetary disks and debris disks, and 2) molecular gas in galaxies during the era of re-ionization. Studies of these topics with Band 1 receivers will significantly expand ALMAs Level 1 Science Goals. In addition, we describe a host of other exciting continuum and line science cases that require ALMAs high sensitivity and angular resolution. For example, ALMA Band 1 continuum data will probe the Sunyaev-Zeldovich Effect in galaxy clusters, Very Small Grains and spinning dust, ionized jets from young stars, spatial and flaring studies of Sgr A*, the acceleration sites of solar flares, pulsar wind nebulae, radio supernovae, and X-ray binaries. Furthermore, ALMA Band 1 line data will probe chemical differentiation in cloud cores, complex carbon chain molecules, extragalactic radio recombination lines, masers, magnetic fields through Zeeman effect measurements, molecular outflows from young stars, the co-evolution of star formation and active galactic nuclei, and the molecular content of galaxies at z ~ 3. ALMA provides similar to better sensitivities than the JVLA over 35-50 GHz, with differences increasing with frequency. ALMAs smaller antennas and shorter baselines, greater number of baselines, and single-dish capabilities, however, give it a significant edge for observing extended emission, making wide-field maps (mosaics), or attaining high image fidelity, as required by the described science cases.
We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four diff erent techniques to combine the Herschel PACS+SPIRE data at 160 - 500 microns with the SCUBA-2 data at 450 microns and 850 microns. Of our four techniques, we found the most robust method was to filter-out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find beta ~ 2 towards the filament region and moderately dense material and lower beta values (beta > 1.6) towards the dense protostellar cores, possibly due to dust grain growth. We find that beta and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~ 2 for beta and by ~ 40% for temperature. Furthermore, we find core mass differences of < 30% compared to Herschel-only estimates with an adopted beta = 2, highlighting the necessity of long wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.
The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre Common-User Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). T his paper describes HARP observations of the J = 3-2 transitions of 13CO and C18O towards Orion A. The 1500-resolution observations cover 5 pc of the Orion filament, including OMC1 (inc. BN-KL and Orion Bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ~1 km/s /pc between OMC 1, 2 and 3, and high velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and line widths, and dominate the mass and energetics of the high velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, C2H5OH, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ~24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40%). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores....continued
We present continuum observations of the Perseus B1-E region from the Herschel Gould Belt Survey. These Herschel data reveal a loose grouping of substructures at 160 - 500 micron not seen in previous submillimetre observations. We measure temperature and column density from these data and select the nine densest and coolest substructures for follow-up spectral line observations with the Green Bank Telescope. We find that the B1-E clump has a mass of ~ 100 solar masses and appears to be gravitationally bound. Furthermore, of the nine substructures examined here, one substructure (B1-E2) appears to be itself bound. The substructures are typically less than a Jeans length from their nearest neighbour and thus, may interact on a timescale of ~ 1 Myr. We propose that B1-E may be forming a first generation of dense cores, which could provide important constraints on the initial conditions of prestellar core formation. Our results suggest that B1-E may be influenced by a strong, localized magnetic field, but further observations are still required.
We present N2D+ 3-2 (IRAM) and H2D+ 1_11 - 1_10 and N2H+ 4-3 (JCMT) maps of the small cluster-forming Ophiuchus B2 core in the nearby Ophiuchus molecular cloud. In conjunction with previously published N2H+ 1-0 observations, the N2D+ data reveal the deuterium fractionation in the high density gas across Oph B2. The average deuterium fractionation R_D = N(N2D+)/N(N2H+) ~ 0.03 over Oph B2, with several small scale R_D peaks and a maximum R_D = 0.1. The mean R_D is consistent with previous results in isolated starless and protostellar cores. The column density distributions of both H2D+ and N2D+ show no correlation with total H2 column density. We find, however, an anticorrelation in deuterium fractionation with proximity to the embedded protostars in Oph B2 to distances >= 0.04 pc. Destruction mechanisms for deuterated molecules require gas temperatures greater than those previously determined through NH3 observations of Oph B2 to proceed. We present temperatures calculated for the dense core gas through the equating of non-thermal line widths for molecules (i.e., N2D+ and H2D+) expected to trace the same core regions, but the observed complex line structures in B2 preclude finding a reasonable result in many locations. This method may, however, work well in isolated cores with less complicated velocity structures. Finally, we use R_D and the H2D+ column density across Oph B2 to set a lower limit on the ionization fraction across the core, finding a mean x_e, lim >= few x 10^{-8}. Our results show that care must be taken when using deuterated species as a probe of the physical conditions of dense gas in star-forming regions.
We present a preliminary analysis of the small-scale structure found in new 70-520 micron continuum maps of the Rosette molecular cloud (RMC), obtained with the SPIRE and PACS instruments of the Herschel Space Observatory. We find 473 clumps within t he RMC using a new structure identification algorithm, with sizes up to ~1.0 pc in diameter. A comparison with recent Spitzer maps reveals that 371 clumps are starless (without an associated young stellar object), while 102 are protostellar. Using the respective values of dust temperature, we determine the clumps have masses (M_C) over the range -0.75 <= log (M_C/M_sun) <= 2.50. Linear fits to the high-mass tails of the resulting clump mass spectra (CMS) have slopes that are consistent with those found for high-mass clumps identified in CO emission by other groups.
We present a Nobeyama 45 m Radio Telescope map and Australia Telescope Compact Array pointed observations of N2H+ 1-0 emission towards the clustered, low mass star forming Oph B Core within the Ophiuchus molecular cloud. We compare these data with pr eviously published results of high resolution NH3 (1,1) and (2,2) observations in Oph B. We use 3D Clumpfind to identify emission features in the single-dish N2H+ map, and find that the N2H+ `clumps match well similar features previously identified in NH3 (1,1) emission, but are frequently offset to clumps identified at similar resolution in 850 micron continuum emission. Wide line widths in the Oph B2 sub-Core indicate non-thermal motions dominate the Core kinematics, and remain transonic at densities n ~ 3 x 10^5 cm^-3 with large scatter and no trend with N(H2). Non-thermal motions in Oph B1 and B3 are subsonic with little variation, but also show no trend with H2 column density. Over all Oph B, non-thermal N2H+ line widths are substantially narrower than those traced by NH3, making it unlikely NH3 and N2H+ trace the same material, but the v_LSR of both species agree well. We find evidence for accretion in Oph B1 from the surrounding ambient gas. The NH3/N2H+ abundance ratio is larger towards starless Oph B1 than towards protostellar Oph B2, similar to recent observational results in other star-forming regions. Small-scale structure is found in the ATCA N2H+ 1-0 emission, where emission peaks are again offset from continuum emission. In particular, the ~1 M_Sun B2-MM8 clump is associated with a N2H+ emission minimum and surrounded by a broken ring-like N2H+ emission structure, suggestive of N2H+ depletion. We find a strong general trend of decreasing N2H+ abundance with increasing N(H2) in Oph B which matches that found for NH3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا