ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterise the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matterwave interferometry, offering long interaction times and large enclosed areas.
We study electromagnetically induced transparency (EIT) in the 5s$rightarrow$5p$rightarrow$46s ladder system of a cold $^{87}$Rb gas. We show that the resonant microwave coupling between the 46s and 45p states leads to an Autler-Townes splitting of t he EIT resonance. This splitting can be employed to vary the group index by $pm 10^5$ allowing independent control of the propagation of dark state polaritons. We also demonstrate that microwave dressing leads to enhanced interaction effects. In particular, we present evidence for a $1/R^3$ energy shift between Rydberg states resonantly coupled by the microwave field and the ensuing breakdown of the pair-wise interaction approximation.
We present a viewport for use in Ultra-high vacuum (UHV) based upon the preflattened solder seal design presented in earlier work, Cox et al. Rev. Sci. Inst. 74, 3185 (2003). The design features significant modifications to improve long term performa nce. The windows have been leak tested to less than 10^-10 atm cm^3/s . From atom number measurements in an optical dipole trap loaded from a vapor cell magneto-optical trap (MOT) inside a vacuum chamber accommodating these viewports, we measure a trap lifetime of 9.5s suggesting a pressure of around 10^-10 Torr limited by background Rubidium vapor pressure. We also present a simplified design where the UHV seal is made directly to a vacuum pipe
We study electromagnetically induced transparency (EIT) of a weakly interacting cold Rydberg gas. We show that the onset of interactions is manifest as a depopulation of the Rydberg state and numerically model this effect by adding a density-dependen t non-linear term to the optical Bloch equations. In the limit of a weak probe where the depopulation effect is negligible, we observe no evidence of interaction induced decoherence and obtain a narrow Rydberg dark resonance with a linewidth of <600 kHz, limited by the Rabi frequency of the coupling beam
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا