ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a limit on the ultra-high-energy neutrino flux based on a non-detection of radio pulses from neutrino-initiated particle cascades in the Moon, in observations with the Parkes radio telescope undertaken as part of the LUNASKA project. Due to the improved sensitivity of these observations, which had an effective duration of 127 hours and a frequency range of 1.2-1.5 GHz, this limit extends to lower neutrino energies than those from previous lunar radio experiments, with a detection threshold below 10^20 eV. The calculation of our limit allows for the possibility of lunar-origin pulses being misidentified as local radio interference, and includes the effect of small-scale lunar surface roughness. The targeting strategy of the observations also allows us to place a directional limit on the neutrino flux from the nearby radio galaxy Centaurus A.
We describe an experiment using the Parkes radio telescope in the 1.2-1.5 GHz frequency range as part of the LUNASKA project, to search for nanosecond-scale pulses from particle cascades in the Moon, which may be triggered by ultra-high-energy astrop articles. Through the combination of a highly sensitive multi-beam radio receiver, a purpose-built backend and sophisticated signal-processing techniques, we achieve sensitivity to radio pulses with a threshold electric field strength of 0.0053 $mu$V/m/MHz, lower than previous experiments by a factor of three. We observe no pulses in excess of this threshold in observations with an effective duration of 127 hours. The techniques we employ, including compensating for the phase, dispersion and spectrum of the expected pulse, are relevant for future lunar radio experiments.
The origin of the most energetic particles in nature, the ultra-high-energy (UHE) cosmic rays, is still a mystery. Only the most energetic of these have sufficiently small angular deflections to be used for directional studies, and their flux is so l ow that even the 3,000 km^2 Pierre Auger detector registers only about 30 cosmic rays per year of these energies. A method to provide an even larger aperture is to use the lunar Askaryan technique, in which ground-based radio telescopes search for the nanosecond radio flashes produced when a cosmic ray interacts with the Moons surface. The technique is also sensitive to UHE neutrinos, which may be produced in the decays of topological defects from the early universe. Observations with existing radio telescopes have shown that this technique is technically feasible, and established the required procedure: the radio signal should be searched for pulses in real time, compensating for ionospheric dispersion and filtering out local radio interference, and candidate events stored for later analysis. For the Square Kilometre Array (SKA), this requires the formation of multiple tied-array beams, with high time resolution, covering the Moon, with either SKA1-LOW or SKA1-MID. With its large collecting area and broad bandwidth, the SKA will be able to detect the known flux of UHE cosmic rays using the visible lunar surface - millions of square km - as the detector, providing sufficient detections of these extremely rare particles to address the mystery of their origin.
The Moon is used as a target volume for ultra-high energy neutrino searches with terrestrial radio telescopes. The LUNASKA project has conducted observations with the Parkes and ATCA telescopes; and, most recently, with both of them in combination. W e present an analysis of the data obtained from these searches, including validation and calibration results for the Parkes-ATCA experiment, as well as a summary of prospects for future observations.
The most sensitive method for detecting neutrinos at the very highest energies is the lunar Cherenkov technique, which employs the Moon as a target volume, using conventional radio telescopes to monitor it for nanosecond-scale pulses of Cherenkov rad iation from particle cascades in its regolith. Multiple-antenna radio telescopes are difficult to effectively combine into a single detector for this purpose, while single antennas are more susceptible to false events from radio interference, which must be reliably excluded for a credible detection to be made. We describe our progress in excluding such interference in our observations with the single-antenna Parkes radio telescope, and our most recent experiment (taking place the week before the ICRC) using it in conjunction with the Australia Telescope Compact Array, exploiting the advantages of both types of telescope.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا