ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - Pei Wang , Di Li , Colin J. Clark 2021
High sensitivity radio searches of unassociated $gamma$-ray sources have proven to be an effective way of finding new pulsars. Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during its commissioning phase, we have carried out a number of targeted deep searches of textit{Fermi} Large Area Telescope (LAT) $gamma$-ray sources. On Feb. 27$^{th}$, 2018 we discovered an isolated millisecond pulsar (MSP), PSR J0318+0253, coincident with the unassociated $gamma$-ray source 3FGL J0318.1+0252. PSR J0318+0253 has a spin period of $5.19$ milliseconds, a dispersion measure (DM) of $26$ pc cm$^{-3}$ corresponding to a DM distance of about $1.3$ kpc, and a period-averaged flux density of $sim$11 $pm$ 2 $mu$Jy at L-band (1.05-1.45 GHz). Among all high energy MSPs, PSR J0318+0253 is the faintest ever detected in radio bands, by a factor of at least $sim$4 in terms of L-band fluxes. With the aid of the radio ephemeris, an analysis of 9.6 years of textit{Fermi}-LAT data revealed that PSR J0318+0253 also displays strong $gamma$-ray pulsations. Follow-up observations carried out by both Arecibo and FAST suggest a likely spectral turn-over around 350 MHz. This is the first result from the collaboration between FAST and the textit{Fermi}-LAT teams as well as the first confirmed new MSP discovery by FAST, raising hopes for the detection of many more MSPs. Such discoveries will make a significant contribution to our understanding of the neutron star zoo while potentially contributing to the future detection of gravitational waves, via pulsar timing array (PTA) experiments.
We present ULTRACAM multiband optical photometry of two transitional millisecond pulsars, PSR J1023+0038 and PSR J1227$-$4853, taken while both were in their radio pulsar states. The light curves show significant asymmetry about the flux maxima in al l observed bands, suggesting an asymmetric source of heating in the system. We model the light curves using the Icarus binary code, using models with an additional hot spot heating contribution and an anisotropic heat redistribution model to treat the asymmetry. Our modelling reveals companion stars with under-filled Roche lobes in both PSRs J1023+0038 and J1227$-$4853, with Roche lobe filling factors in the range $f sim 0.82-0.92$. While the volume-averaged filling factors are closer to unity, significant under-filling is unexpected from tMSPs as they must rapidly over-fill their Roche lobes to start transferring mass, which occurs on timescale of weeks or months. We discuss the motivation and validity of our extensions to the models and the implications of the under-filled Roche lobe, and suggest future work to further investigate the role of the filling factor in the tMSP cycle.
Thermal disc winds occur in many contexts and may be particularly important to the secular evolution and dispersal of protoplanetary discs heated by high energy radiation from their central star. In this paper we generalise previous models of self-si milar thermal winds - which have self-consistent morphology and variation of flow variables - to the case of launch from an elevated base and to non-isothermal conditions. These solutions are well-reproduced by hydrodynamic simulations, in which, as in the case of isothermal winds launched from the mid-plane, we find winds launch at the maximum Mach number for which the streamline solutions extend to infinity without encountering a singularity. We explain this behaviour based on the fact that lower Mach number solutions do not fill the spatial domain. We also show that hydrodynamic simulations reflect the corresponding self-similar models across a range of conditions appropriate to photoevaporating protoplanetary discs, even when gravity, centrifugal forces, or changes in the density gradient mean the problem is not inherently scale free. Of all the parameters varied, the elevation of the wind base affected the launch velocity and flow morphology most strongly, with temperature gradients causing only minor differences. We explore how launching from an elevated base affects Ne II line profiles from winds, finding it increases (reduces) the full width at half maximum (FWHM) of the line at low (high) inclination to the line of sight compared with models launched from the disc mid-plane and thus weakens the dependence of the FWHM on inclination.
This paper sets out a robust methodology for modelling spectra of polyatomic molecules produced in reactive or dissociative environments, with vibrational populations outside local thermal equilibrium (LTE). The methodology is based on accurate, exte nsive ro-vibrational line lists containing transitions with high vibrational excitations and relies on the detailed ro-vibrational assignments. The developed methodology is applied to model non-LTE IR and visible spectra of silylene (SiH$_2$) produced in a decomposition of disilane (Si$_2$H$_6$), a reaction of technological importance. Two approaches for non-LTE vibrational populations of the product SiH$_2$ are introduced: a simplistic 1D approach based on the Harmonic approximation and a full 3D model incorporating accurate vibrational wavefunctions of SiH$_2$ computed variationally with the TROVE (Theoretical ROVibrational Energy) program. We show how their non-LTE spectral signatures can be used to trace different reaction channels of molecular dissociations.
In this paper, we investigate whether overdensity formation via streaming instability is consistent with recent multi-wavelength ALMA observations in the Lupus star forming region. We simulate the local action of streaming instability in 2D using the code ATHENA, and examine the radiative properties at mm wavelengths of the resulting clumpy dust distribution by focusing on two observable quantities: the optically thick fraction $ff$ (in ALMA band 6) and the spectral index $alpha$ (in bands 3-7). By comparing the simulated distribution in the $ff-alpha$ plane before and after the action of streaming instability, we observe that clump formation causes $ff$ to drop, because of the suppression of emission from grains that end up in optically thick clumps. $alpha$, instead, can either increase or decline after the action of streaming instability; we use a simple toy model to demonstrate that this behaviour depends on the sizes of the grains whose emission is suppressed by being incorporated in optically thick clumps. In particular, the sign of evolution of $alpha$ depends on whether grains near the opacity maximum at a few tenths of a mm end up in clumps. By comparing the simulation distributions before/after clump formation to the data distribution, we note that the action of streaming instability drives simulations towards the area of the plane where the data are located. We furthermore demonstrate that this behaviour is replicated in integrated disc models provided that the instability is operative over a region of the disc that contributes significantly to the total mm flux.
A necessary first step for dust removal in protoplanetary disc winds is the delivery of dust from the disc to the wind. In the case of ionized winds, the disc and wind are sharply delineated by a narrow ionization front where the gas density and temp erature vary by more than an order of magnitude. Using a novel method that is able to model the transport of dust across the ionization front in the presence of disc turbulence, we revisit the problem of dust delivery. Our results show that the delivery of dust to the wind is determined by the vertical gas flow through the disc induced by the mass loss, rather than turbulent diffusion (unless the turbulence is strong, i.e. $alpha gtrsim 0.01$). Using these results we provide a simple relation between the maximum size of particle that can be delivered to the wind and the local mass-loss rate per unit area from the wind. This relation is independent of the physical origin of the wind and predicts typical sizes in the 0.01 -- $1,mu m$ range for EUV or X-ray driven winds. These values are a factor $sim 10$ smaller than those obtained when considering only whether the wind is able to carry away the grains.
We analyse spatially resolved ALMA observations at 0.9, 1.3, and 3.1 mm for the 26 brightest protoplanetary discs in the Lupus star-forming region. We characterise the discs multi-wavelength brightness profiles by fitting the interferometric visibili ties in a homogeneous way, obtaining effective disc sizes at the three wavelengths, spectral index profiles and optical depth estimates. We report three fundamental discoveries: first, the millimeter continuum size - luminosity relation already observed at 0.9 mm is also present at 1.3 mm with an identical slope, and at 3.1 mm with a steeper slope, confirming that emission at longer wavelengths becomes increasingly optically thin. Second, when observed at 3.1 mm the discs appear to be only 9% smaller than when observed at 0.9 mm, in tension with models of dust evolution which predict a starker difference. Third, by forward modelling the sample of measurements with a simple parametric disc model, we find that the presence of large grains ($a_mathrm{max}>1 $mm) throughout the discs is the most favoured explanation for all discs as it reproduces simultaneously their spectral indices, optical depth, luminosity, and radial extent in the 0.9-1.3 mm wavelength range. We also find that the observations can be alternatively interpreted with the discs being dominated by optically thick, unresolved, substructures made of mm-sized grains with a high scattering albedo.
Most of todays popular deep architectures are hand-engineered to be generalists. However, this design procedure usually leads to massive redundant, useless, or even harmful features for specific tasks. Unnecessarily high complexities render deep nets impractical for many real-world applications, especially those without powerful GPU support. In this paper, we attempt to derive task-dependent compact models from a deep discriminant analysis perspective. We propose an iterative and proactive approach for classification tasks which alternates between (1) a pushing step, with an objective to simultaneously maximize class separation, penalize co-variances, and push deep discriminants into alignment with a compact set of neurons, and (2) a pruning step, which discards less useful or even interfering neurons. Deconvolution is adopted to reverse unimportant filters effects and recover useful contributing sources. A simple network growing strategy based on the basic Inception module is proposed for challenging tasks requiring larger capacity than what the base net can offer. Experiments on the MNIST, CIFAR10, and ImageNet datasets demonstrate our approachs efficacy. On ImageNet, by pushing and pruning our grown Inception-88 model, we achieve more accurate models than Inception nets generated during growing, residual nets, and popular compact nets at similar sizes. We also show that our grown Inception nets (without hard-coded dimension alignment) clearly outperform residual nets of similar complexities.
We report the discovery of 1.97 ms period gamma-ray pulsations from the 75 minute orbital-period binary pulsar now named PSR J1653-0158. The associated Fermi Large Area Telescope gamma-ray source 4FGL J1653.6-0158 has long been expected to harbor a b inary millisecond pulsar. Despite the pulsar-like gamma-ray spectrum and candidate optical/X-ray associations -- whose periodic brightness modulations suggested an orbit -- no radio pulsations had been found in many searches. The pulsar was discovered by directly searching the gamma-ray data using the GPU-accelerated Einstein@Home distributed volunteer computing system. The multi-dimensional parameter space was bounded by positional and orbital constraints obtained from the optical counterpart. More sensitive analyses of archival and new radio data using knowledge of the pulsar timing solution yield very stringent upper limits on radio emission. Any radio emission is thus either exceptionally weak, or eclipsed for a large fraction of the time. The pulsar has one of the three lowest inferred surface magnetic-field strengths of any known pulsar with $B_{rm surf} approx 4 times 10^{7},$G. The resulting mass function, combined with models of the companion stars optical light curve and spectra, suggests a pulsar mass $gtrsim 2,M_{odot}$. The companion is light-weight with mass $sim 0.01,M_{odot}$, and the orbital period is the shortest known for any rotation-powered binary pulsar. This discovery demonstrates the Fermi Large Area Telescopes potential to discover extreme pulsars that would otherwise remain undetected.
The Fermi Large Area Telescope gamma-ray source 3FGL J2039.6$-$5618 contains a periodic optical and X-ray source that was predicted to be a redback millisecond pulsar (MSP) binary system. However, the conclusive identification required the detection of pulsations from the putative MSP. To better constrain the orbital parameters for a directed search for gamma-ray pulsations, we obtained new optical light curves in 2017 and 2018, which revealed long-term variability from the companion star. The resulting orbital parameter constraints were used to perform a targeted gamma-ray pulsation search using the Einstein@Home distributed volunteer computing system. This search discovered pulsations with a period of 2.65 ms, confirming the source as a binary MSP now known as PSR J2039$-$5617. Optical light curve modelling is complicated, and likely biased, by asymmetric heating on the companion star and long-term variability, but we find an inclination $i > 60{deg}$, for a low pulsar mass between $1.1 M_{odot} < M_{rm psr} < 1.6 M_{odot}$ and a companion mass of 0.15--0.22 $M_{odot}$, confirming the redback classification. Timing the gamma-ray pulsations also revealed significant variability in the orbital period, which we find to be consistent with quadrupole moment variations in the companion star, suggestive of convective activity. We also find that the pulsed flux is modulated at the orbital period, potentially due to inverse Compton scattering between high-energy leptons in the pulsar wind and the companion stars optical photon field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا