ترغب بنشر مسار تعليمي؟ اضغط هنا

426 - J. Catani , G. Lamporesi , D. Naik 2011
Using a species-selective dipole potential, we create initially localized impurities and investigate their interactions with a majority species of bosonic atoms in a one-dimensional configuration during expansion. We find an interaction-dependent amp litude reduction of the oscillation of the impurities size with no measurable frequency shift, and study it as a function of the interaction strength. We discuss possible theoretical interpretations of the data. We compare, in particular, with a polaronic mass shift model derived following Feynman variational approach.
We experimentally investigate the mix-dimensional scattering occurring when the collisional partners live in different dimensions. We employ a binary mixture of ultracold atoms and exploit a species-selective 1D optical lattice to confine only one at omic species in 2D. By applying an external magnetic field in proximity of a Feshbach resonance, we adjust the free-space scattering length to observe a series of resonances in mixed dimensions. By monitoring 3-body inelastic losses, we measure the magnetic field values corresponding to the mix-dimensional scattering resonances and find a good agreement with the theoretical predictions based on simple energy considerations.
We investigate experimentally the entropy transfer between two distinguishable atomic quantum gases at ultralow temperatures. Exploiting a species-selective trapping potential, we are able to control the entropy of one target gas in presence of a sec ond auxiliary gas. With this method, we drive the target gas into the degenerate regime in conditions of controlled temperature by transferring entropy to the auxiliary gas. We envision that our method could be useful both to achieve the low entropies required to realize new quantum phases and to measure the temperature of atoms in deep optical lattices. We verified the thermalization of the two species in a 1D lattice.
The route toward a Bose-Einstein condensate of dipolar molecules requires the ability to efficiently associate dimers of different chemical species and transfer them to the stable rovibrational ground state. Here, we report on recent spectroscopic me asurements of two weakly bound molecular levels and newly observed narrow d-wave Feshbach resonances. The data are used to improve the collisional model for the Bose-Bose mixture 41K87Rb, among the most promising candidates to create a molecular dipolar BEC.
We report on the creation of heterospecies bosonic molecules, associated from an ultracold Bose-Bose mixture of 41K and 87Rb, by using a resonantly modulated magnetic field close to two Feshbach resonances. We measure the binding energy of the weakly bound molecular states versus the Feshbach field and compare our results to theoretical predictions. We observe the broadening and asymmetry of the association spectrum due to thermal distribution of the atoms, and a frequency shift occurring when the binding energy depends nonlinearly on the Feshbach field. A simple model is developed to quantitatively describe the association process. Our work marks an important step forward in the experimental route towards Bose-Einstein condensates of dipolar molecules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا