ترغب بنشر مسار تعليمي؟ اضغط هنا

We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, w hich is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict $sim 10-100$ of B BH binaries to currently reside in the Galactic disk, among which around $1/3$ contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding BH binaries, with BH X-ray Novae formation issue being the prime example. The future evolution of MWC 656 with a $sim 5$ M$_{odot}$ black hole and with a $sim 13$ M$_{odot}$ main sequence companion on a $sim 60$ day orbit may lead to the formation of a coalescing BH-NS system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to $sim 0.2$ yr$^{-1}$. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH--NS binaries.
We present photometric and spectroscopic observations of the low mass X-ray binary GR Mus (XB 1254-690), and find strong evidence for the presence of a negative superhump with a period that is 2.4+/-0.3% shorter than the orbital. This provides furthe r support that GR Mus indeed harbours a precessing accretion disk (with a period of 6.74+/-0.07 day) that has retrograde precession and is completely tilted out of the orbital plane along its line of nodes. This tilt causes a large fraction of the gas in the accretion stream to either over- or underflow the accretion disk instead of hitting the disk rim, and could be a feature of all low mass X-ray binaries with characteristics similar to GR Mus (i.e. the so-called atoll sources). Furthermore, we also find marginal evidence for the presence of a positive superhump, suggesting that the accretion disk in GR Mus is eccentric due to tidal resonances. If true, than the relationship between the positive superhump period excess and the mass ratio (q) provides a constraint of q=M_donor/M_NS=0.33-0.36. Together with the radial velocity semi-amplitude measurements of the compact object, and previous modeling of the inclination we obtain a mass for the neutron star of 1.2<M_NS/M_sun<1.8 (95% confidence).
Spectroscopy of the low mass X-ray binary Ser X-1 using the Gran Telescopio Canarias have revealed a ~2 hr periodic variability that is present in the three strongest emission lines. We tentatively interpret this variability as due to orbital motion, making it the first indication of the orbital period of Ser X-1. Together with the fact that the emission lines are remarkably narrow, but still resolved, we show that a main sequence K-dwarf together with a canonical 1.4Msun neutron star gives a good description of the system. In this scenario the most likely place for the emission lines to arise is the accretion disk, instead of a localized region in the binary (such as the irradiated surface or the stream-impact point), and their narrowness is due instead to the low inclination (<10 degrees) of Ser X-1.
195 - A. Dobrotka , L. Hric , J. Casares 2009
We analyze $V$-band photometry of the aperiodic variability in T CrB. By applying a simple idea of angular momentum transport in the accretion disc, we have developed a method to simulate the statistical distribution of flare durations with the assum ption that the aperiodic variability is produced by turbulent elements in the disc. Both cumulative histograms with Kolmogorov-Smirnov tests, and power density spectra are used to compare the observed data and simulations. The input parameters of the model $R_{rm in}$ and $alpha$ are correlated on a certain interval and the most probable values are an inner disc radius of $R_{rm in} simeq 4 times 10^9$ cm and a viscosity of $alpha simeq 0.9$. The disc is then weakly truncated. We find that the majority of turbulent events producing flickering activity are concentrated in the inner parts of the accretion disc.
Intermediate resolution (0.5-1 Angs) optical spectroscopy of the cataclysmic variable SY Cnc reveals the spectrum of the donor star. Our data enable us to resolve the orbital motion of the donor and provide a new orbital solution, binary mass ratio a nd spectral classification. We find that the donor star has spectral type G8+-2 V and orbits the white dwarf with P=0.3823753 +- 0.0000003 day, K2=88.0 +-2.9 km/s and V sin i=75.5 +- 6.5 km/s. Our values are significantly different from previous works and lead to q=M2/M1=1.18 +- 0.14. This is one of the highest mass ratios known in a CV and is very robust because it is based on resolving the rotational broadening over a large number of metallic absorption lines. The donor could be a slightly evolved main-sequence or descendant from a massive star which underwent an episode of thermal-timescale mass transfer.
We present VLT intermediate resolution spectroscopy of UY Vol, the optical counterpart of the LMXB X-ray burster EXO 0748-676. By using Doppler tomography we detect narrow components within the broad He II 4542 A, 4686 A and 5412 A emission lines. Th e phase, velocity and narrowness of these lines are consistent with their arising from the irradiated hemisphere of the donor star, as has been observed in a number of LMXBs. Under this assumption we provide the first dynamical constraints on the stellar masses in this system. In particular, we measure K_2>K_em = 300 +/- 10 km/s. Using this value we derive 1 M_sun < M_1 < 2.4 M_sun and 0.11 < q < 0.28. We find M_1 > 1.5 M_sun for the case of a main sequence companion star. Our results are consistent with the presence of a massive neutron star as has been suggested by Ozel (2006), although we cannot discard the canonical value of ~1.4 M_sun.
We apply the K-correction to the black hole LMXB GX 339-4 which implies Mx > 6 Msun by only assuming that the companion is more massive than ~0.17 Msun, the lower limit allowed by applying a stripped-giant model. This evolutionary model successfully reproduces the observed properties of the system. We obtain a maximum mass for the companion of M2 < 1.1 Msun and an upper limit to the mass ratio of q(=M2/Mx)< 0.125. The high X-ray activity displayed by the source suggests a relatively large mass transfer rate which, according to the model, results in M2 > 0.3 Msun and Mx > 7 Msun. We have also applied this scenario to the black hole binary XTE J1550-564, which has a similar orbital period but the donor is detected spectroscopically. The model successfully reproduces the observed stellar parameters.
We present simultaneous high time resolution (1-10 Hz) X-ray and optical observations of the persistent LMXBs Sco X-1 and V801 Ara(=4U 1636-536). In the case of Sco X-1 we find that the Bowen/HeII emission lags the X-ray light-curves with a light tra vel time of ~11-16s which is consistent with reprocessing in the donor star. We also present the detection of three correlated X-ray/optical bursts in V801 ara. Although this latter project is still in progress our preliminary results obtained by subtracting the Continuum light-curve from the Bowen/HeII data provide evidence of orbital phase dependent echoes from the companion star.
Two nights of phase-resolved medium resolution VLT spectroscopy of the extra-galactic low mass X-ray binary LMC X-2 have revealed a 0.32+/-0.02 day spectroscopic period in the radial velocity curve of the HeII lambda4686 emission line that we interpr et as the orbital period. However, similar to previous findings, this radial velocity curve shows a longer term variation that is most likely due to the presence of a precessing accretion disk in LMC X-2. This is strengthened by HeII lambda4686 Doppler maps that show a bright spot that is moving from night to night. Furthermore, we detect narrow emission lines in the Bowen region of LMC X-2,with a velocity of K_em=351+/-28 km/s, that we tentatively interpret as coming from the irradiated side of the donor star. Since K_em must be smaller than K_2, this leads to the first upper-limit on the mass function of LMC X-2 of f(M_1)>=0.86Msun (95% confidence), and the first constraints on its system parameters.
We present simultaneous high-resolution optical spectroscopy and X-ray data of the X-ray binary system GR Mus (XB1254-690), obtained over a full range of orbital phases. The X-ray observations are used to re-establish the orbital ephemeris for this s ource. The optical data includes the first spectroscopic detection of the donor star in this system, through the use of the Doppler Tomography technique on the Bowen fluorescence blend (~4630-4650 A). In combination with an estimate for the orbital parameters of the compact object using the wings of the He II 4686 emission line, dynamical mass constraints of 1.20 < M_X/M_{sun} < 2.64 for the neutron star and 0.45 < M_2/M_{sun} < 0.85 for the companion are derived.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا