ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted bi-layer graphene (tBLG) has recently attracted interest due to the peculiar electrical properties that arise from its random rotational configurations. Our experiments on CVD-grown graphene from Cu foil and transferred onto Si substrates, wi th an oxide layer of 100 nm, reveal naturally-produced bi-layer graphene patches which present different colorations when shined with white light. In particular yellow-, pink- and blue- colored areas are evidenced. Combining optical microscopy, Raman spectroscopy and transmission electron microscopy we have been able to assign these colorations to ranges of rotational angles between the two graphene layers. Optical contrast simulations have been carried out, proving that the observation of the different colorations is due to the angle-dependent electronic properties of tBLG combined with the reflection that results from the layered structure tBLG / 100 nm-thick SiO2 / Si. Our results could lead the way to an easy selective identification of bi-layer graphene merely through the observation on an optical microscope.
Bi-layer graphene with a twist angle theta between the layers generates a superlattice structure known as Moir{e} pattern. This superlattice provides a theta-dependent q wavevector that activates phonons in the interior of the Brillouin zone. Here we show that this superlattice-induced Raman scattering can be used to probe the phonon dispersion in twisted bi-layer graphene (tBLG). The effect reported here is different from the broadly studied double-resonance in graphene-related materials in many aspects, and despite the absence of stacking order in tBLG, layer breathing vibrations (namely ZO phonons) are observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا