ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21K was observed in the most Fe deficient film (x=0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.
Superconductivity of Ca1-xLaxFe2As2 single crystals with various doping level were investigated via electromagnetic measurements for out-plane (H//c) and in-plane (H//ab) directions. Obvious double superconducting transitions, which can survive in ma gnetic fields up to several Tesla, were observed in the medium-doped (x = 0.13) sample. Two kinds of distinct Hc2 phase diagrams were established for the low superconducting phase with Tc lower than 15 K and the high superconducting phase with Tc of over 40 K, respectively. Both the two kinds of phase diagrams exist in the medium-doped sample. Unusual upward curvature near Tc was observed in Hc2 phase diagrams and analyzed in detail. Temperature dependences of anisotropy for different doping concentrations were obtained and compared. Both superconducting phases manifest extremely large anisotropies, which may originate from the interface or intercalation superconductivity.
78 - Y. Ding , Y. Sun , J. C. Zhuang 2011
A series of polycrystalline SmFeAs1-xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting volume fraction, the critical current densities Jcm and the flux pinning force densities Fp were estimated from the magnetization measurements. Experimental results manifest that: (1) the superconducting volume fraction decreases with the decreasing of sample density. (2) The Jcm values have the similar trend except for the sample with very high density may due to different connectivity and pinning mechanism. Moreover, The Jcm(B) curve develops a peak effect at approximately the same field at which the high-density sample shows a kink. (3) The Fp(B) curve of the high-density sample shows a low-field peak and a high-field peak at several temperatures, which can be explained by improved intergranular current, while only one peak can be observed in Fp(B) of the low-density samples. Based on the scaling behaviour of flux pinning force densities, the main intragranular pinning is normal point pinning.
43 - Y. Sun , Y. Ding , J. C. Zhuang 2011
Temperature dependent resistivity of the iron-based superconductor NdFeAsO0.88F0.12 was measured under different applied fields and excitation currents. Arrhenius plot shows an anomalous tail effect, which contains obvious two resistivity dropping st ages. The first is caused by the normal superconducting transition, and the second is supposed to be related to the weak-link between the grains. A model for the resistivity dropping related to the weak-link behavior is proposed, which is based on the Josephson junctions formed by the impurities in grain boundaries like FeAs, Sm2O3 and cracks together with the adjacent grains. These Josephson junctions can be easily broken by the applied fields and the excitations currents, leading to the anomalous resistivity tail in many polycrystalline iron-based superconductors. The calculated resistivity dropping agrees well with the experimental data, which manifests the correctness of the explanation of the obtained anomalous tail effect.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا