ترغب بنشر مسار تعليمي؟ اضغط هنا

CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of elec trons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.
208 - K. J. Li , W. Feng , J. C. Xu 2012
In order to probe the mechanism of variations of the Solar Constant on the inter-solar-cycle scale, total solar irradiance (TSI, the so-called Solar Constant) in the time interval of 7 November 1978 to 20 September 2010 is decomposed into three compo nents through the empirical mode decomposition and time-frequency analyses. The first component is the rotation signal, counting up to 42.31% of the total variation of TSI, which is understood to be mainly caused by large magnetic structures, including sunspot groups. The second is an annual-variation signal, counting up to 15.17% of the total variation, the origin of which is not known at this point in time. Finally, the third is the inter-solar-cycle signal, counting up to 42.52%, which are inferred to be caused by the network magnetic elements in quiet regions, whose magnetic flux ranges from $(4.27-38.01)times10^{19}$ Mx.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا