ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that in the minimal 3-3-1 model the flavor changing neutral currents (FCNCs) do not impose necessarily strong constraints on the mass of the $Z^prime$ of the model if we also consider the neutral scalar contributions to such processes, like t he neutral mesons mass difference and rare semileptonic decays. We first obtain numerical values for all the mixing matrices of the model i.e., the unitary matrices that rotate the left- and right-handed quarks in each charge sector which give the correct mass of all the quarks and the CKM mixing matrix. Then, we find that there is a range of parameters in which the neutral scalar contributions to these processes may interfere with those of the $Z^prime$, implying this vector boson may be lighter than it has been thought.
In a recently proposed multi-Higgs extension of the standard model in which discrete symmetries, $A_4$ and $Z_3$ are imposed we show that, after accommodating the fermion masses and the mixing matrices in the charged currents, the mixing matrices in the neutral currents induced by neutral scalars are numerically obtained. However, the flavor changing neutral currents are under control mainly by mixing and/or mass suppressions in the neutral scalar sector.
We worked out in detail the three-Higgs-doublet extension of the standard model when the $A_4$ symmetry, which is imposed to solve the flavor problem, is extended to the scalar sector. The three doublets may be related to the fermion mass generation and, in particular, they may be the unique responsible for the generation of the neutrino masses. If this is the case, the respective VEVs have to be quite smaller than the electroweak scale if no fine tuning in the Yukawa couplings is assumed. We consider here the mass spectra in the scalar sector in three different situations. In one of them there are no light scalars at all, but in the other ones a light or two massless scalars, at the tree level, may survive. The later fields are safe, from the phenomenological point of view, since it couples mainly with neutrinos and/or becomes enough massive at the tree level if there exist trilinear interactions. Quantum effects may be important too.
In this letter we consider that assuming: a) that the only left-handed neutral fermions are the active neutrinos, b) that $B-L$ is a gauge symmetry, and c) that the $L$ assignment is restricted to the integer numbers, the anomaly cancellation imply t hat at least three right-handed neutrinos must be added to the minimal representation content of the electroweak standard model. However, two types of models arise: i) the usual one where each of the three identical right-handed neutrinos has total lepton number L=1; ii) and the other one in which two of them carry L=4 while the third one carries $L=-5$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا