ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the full description of a measurement of the branching ratios for the beta-decay of 38Ca. This decay includes five allowed 0+ --> 1+ branches and a superallowed 0+ --> 0+ one. With our new result for the latter, we determine its ft value t o be 3062.3(68) s, a result whose precision (0.2%) is comparable to the precision of the thirteen well known 0+ --> 0+ transitions used up till now for the determination of Vud, the up-down quark-mixing element of the CKM matrix. The 38Ca superallowed transition thus becomes the first addition to this set of transitions in nearly a decade and the first for which a precise mirror comparison is possible, thus enabling an improved test of the isospin-symmetry-breaking corrections required for the extraction of Vud.
The half-life of 46V has been measured to be 422.66(6) ms, which is a factor of two more precise than the best previous measurement. Our result is also consistent with the previous measurements, with no repeat of the disagreement recently encountered with Q_{EC} values measured for the same transition. The Ft value for the 46V superallowed transition, incorporating all world data, is determined to be 3074.1(26) s, a result consistent with the average Ft value of 3072.08(79) s established from the 13 best-known superallowed transitions.
253 - L. Trache , A. Banu , J. C. Hardy 2009
We have developed a technique to measure beta-delayed proton decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slo wed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. The beam is pulsed and beta-p decay of the pure sources collected in beam is measured between beam pulses. Implantation avoids the problems with detector windows and allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. Using this technique, we have studied the isotopes 23Al and 31Cl, both important for understanding explosive H-burning in novae. They were produced in the reactions 24Mg(p,2n)23Al and 32S(p,2n)31Cl, respectively, in inverse kinematics, from stable beams at 48 and 40 MeV/u, respectively. We give details about the technique, its performances and the results for 23Al and 31Cl beta-p decay. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and would work even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,g)23Mg and 30P(p,g)31S, respectively.
We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismat ch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا