ترغب بنشر مسار تعليمي؟ اضغط هنا

264 - T. D. Russell 2015
MAXI J1836-194 is a Galactic black hole candidate X-ray binary that was discovered in 2011 when it went into outburst. In this paper, we present the full radio monitoring of this system during its `failed outburst, in which the source did not complet e a full set of state changes, only transitioning as far as the hard intermediate state. Observations with the Karl G. Jansky Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) show that the jet properties changed significantly during the outburst. The VLA observations detected linearly polarised emission at a level of ~1% early in the outburst, increasing to ~3% as the outburst peaked. High-resolution images with the Very Long Baseline Array (VLBA) show a ~15 mas jet along the position angle $-21 pm 2^circ$, in agreement with the electric vector position angle found from our polarisation results ($-21 pm 4^circ$), implying that the magnetic field is perpendicular to the jet. Astrometric observations suggest that the system required an asymmetric natal kick to explain its observed space velocity. Comparing quasi-simultaneous X-ray monitoring with the 5 GHz VLA observations from the 2011 outburst shows an unusually steep hard-state radio/X-ray correlation of $L_{rm R} propto L_{rm X}^{1.8pm0.2}$, where $L_{rm R}$ and $L_{rm X}$ denote the radio and X-ray luminosities, respectively. With ATCA and Swift monitoring of the source during a period of re-brightening in 2012, we show that the system lay on the same steep correlation. Due to the low inclination of this system, we then investigate the possibility that the observed correlation may have been steepened by variable Doppler boosting.
The universal link between the processes of accretion and ejection leads to the formation of jets and outflows around accreting compact objects. Incoherent synchrotron emission from these outflows can be observed from a wide range of accreting binari es, including black holes, neutron stars, and white dwarfs. Monitoring the evolution of the radio emission during their sporadic outbursts provides important insights into the launching of jets, and, when coupled with the behaviour of the source at shorter wavelengths, probes the underlying connection with the accretion process. Radio observations can also probe the impact of jets/outflows (including other explosive events such as magnetar giant flares) on the ambient medium, quantifying their kinetic feedback. The high sensitivity of the SKA will open up new parameter space, enabling the monitoring of accreting stellar-mass compact objects from their bright, Eddington-limited outburst states down to the lowest-luminosity quiescent levels, whose intrinsic faintness has to date precluded detailed studies. A census of quiescently accreting black holes will also constrain binary evolution processes. By enabling us to extend our existing investigations of black hole jets to the fainter jets from neutron star and white dwarf systems, the SKA will permit comparative studies to determine the role of the compact object in jet formation. The high sensitivity, wide field of view and multi-beaming capability of the SKA will enable the detection and monitoring of all bright flaring transients in the observable local Universe, including the ULXs, ... [Abridged] This chapter reviews the science goals outlined above, demonstrating the progress that will be made by the SKA. We also discuss the potential of the astrometric and imaging observations that would be possible should a significant VLBI component be included in the SKA.
[Abridged] We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 hrs at 5.3 GHz, yielding a 4.8 pm 1.4 microJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4-8E+25 erg/s, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2E-14 erg/s/cm^2 (1-10 keV), corresponding to an Eddington ratio of ~4E-9 for a 7.5 solar mass black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ellr=alpha+beta*ellx (where ell denotes logarithmic luminosities), with beta=0.72pm0.09. XTE J1118+480 is thus the third system, together with GX339-4 and V404 Cyg, for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in ellx. We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors <=0.3 dex in both ellr and ellx, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope beta=0.61pm0.03 and intrinsic scatter sigma_0=0.31pm 0.03 dex.
66 - T. D. Russell 2013
We present the results of our quasi-simultaneous radio, sub-mm, infrared, optical and X-ray study of the Galactic black hole candidate X-ray binary MAXI J1836-194 during its 2011 outburst. We consider the full multi-wavelength spectral evolution of t he outburst, investigating whether the evolution of the jet spectral break (the transition between optically-thick and optically-thin synchrotron emission) is caused by any specific properties of the accretion flow. Our observations show that the break does not scale with the X-ray luminosity or with the inner radius of the accretion disk, and is instead likely to be set by much more complex processes. We find that the radius of the acceleration zone at the base of the jet decreases from ~10$^6$ gravitational radii during the hard intermediate state to ~10$^3$ gravitational radii as the outburst fades (assuming a black hole mass of 8 M$_{odot}$), demonstrating that the electrons are accelerated on much larger scales than the radius of the inner accretion disk and that the jet properties change significantly during outburst. From our broadband modelling and high-resolution optical spectra, we argue that early in the outburst, the high-energy synchrotron cooling break was located in the optical band, between $approx 3.2 times 10^{14}$ Hz and $4.5 times 10^{14}$ Hz. We calculate that the jet has a total radiative power of $approx 3.1 times 10^{36}$ ergs s$^{-1}$, which is ~6% of the bolometric radiative luminosity at this time. We discuss how this cooling break may evolve during the outburst, and how that evolution dictates the total jet radiative power. Assuming the source is a stellar-mass black hole with canonical state transitions, from the measured flux and peak temperature of the disk component we constrain the source distance to be 4-10 kpc.
Dwarf novae are white dwarfs accreting matter from a nearby red dwarf companion. Their regular outbursts are explained by a thermal-viscous instability in the accretion disc, described by the disc instability model that has since been successfully ex tended to other accreting systems. However, the prototypical dwarf nova, SS Cygni, presents a major challenge to our understanding of accretion disc theory. At the distance of 159 +/- 12 pc measured by the Hubble Space Telescope, it is too luminous to be undergoing the observed regular outbursts. Using very long baseline interferometric radio observations, we report an accurate, model-independent distance to SS Cygni that places the source significantly closer at 114 +/- 2 pc. This reconciles the source behavior with our understanding of accretion disc theory in accreting compact objects.
The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate mass black hole (IMBH) of mass 1.8 +/- 0.5 x 10^4 solar masses at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L_X = 1.74^{+0.53}_{-0.44} x 10^{36} (d/750 kpc)^2 erg/s in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3-sigma upper limit of 4.7 microJy/beam. Our favored explanation for the previous radio detection is flaring activity from a black hole low mass X-ray binary (LMXB). We performed a new regression of the Fundamental Plane of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M_{BH} = (1.638 +/- 0.070)log L_R - (1.136 +/- 0.077)log L_X - (6.863 +/- 0.790), with an empirically-determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9700 solar masses at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and meas ure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts, with a possible positive correlation with outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst, and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near the beginning and end of an outburst.
We present the first resolved imaging of the milliarcsecond-scale jets in the neutron star X-ray binary Circinus X-1, made using the Australian Long Baseline Array. The angular extent of the resolved jets is ~20 milliarcseconds, corresponding to a ph ysical scale of ~150 au at the assumed distance of 7.8 kpc. The jet position angle is relatively consistent with previous arcsecond-scale imaging with the Australia Telescope Compact Array. The radio emission is symmetric about the peak, and is unresolved along the minor axis, constraining the opening angle to be less than 20 degrees. We observe evidence for outward motion of the components between the two halves of the observation. Constraints on the proper motion of the radio-emitting components suggest that they are only mildly relativistic, although we cannot definitively rule out the presence of the unseen, ultra-relativistic (Lorentz factor >15) flow previously inferred to exist in this system.
Using high-precision astrometric optical observations from the Walter Baade Magellan Telescope in conjunction with high-resolution very long baseline interferometric (VLBI) radio imaging with the Very Long Baseline Array (VLBA), we have located the c ore of the X-ray binary system XTE J1752-223. Compact radio emission from the core was detected following the state transition from the soft to the hard X-ray state. Its position to the south-east of all previously-detected jet components mandated a re-analysis of the existing VLBI data. Our analysis suggests that the outburst comprised at least two ejection events prior to 2010 February 26. No radio-emitting components were detected to the south-east of the core at any epoch, suggesting that the receding jets were Doppler-deboosted below our sensitivity limit. From the ratio of the brightness of the detected components to the measured upper limits for the receding ejecta, we constrain the jet speed to be greater than 0.66c and the inclination angle to the line of sight to be less than 49 degrees. Assuming that the initial ejection event occurred at the transition from the hard intermediate state to the soft intermediate state, an initial period of ballistic motion followed by a Sedov phase (i.e. self-similar adiabatic expansion) appears to fit the motion of the ejecta better than a uniform deceleration model. The accurate core location can provide a long time baseline for a future proper motion determination should the system show a second outburst, providing insights into the formation mechanism of the compact object.
52 - A. Moin 2011
A recent detection of the peculiar neutron star X-ray binary Circinus X-1 with electronic very long baseline interferometry (e-VLBI) prompted the suggestion that compact, non-variable radio emission persists through the entire 16.6-day orbit of the b inary system. We present the results of a high angular resolution monitoring campaign conducted with the Australian Long Baseline Array in real-time e-VLBI mode. e-VLBI observations of Circinus X-1 were made on alternate days over a period of 20 days covering the full binary orbit. A compact radio source associated with Circinus X-1 was clearly detected at orbital phases following periastron passage but no compact radio emission was detected at any other orbital phase, ruling out the presence of a persistent, compact emitting region at our sensitivity levels. The jet was not resolved at any epoch of our 1.4-GHz monitoring campaign, suggesting that the ultrarelativistic flow previously inferred to exist in this source is likely to be dark. We discuss these findings within the context of previous radio monitoring of Circinus X-1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا