ترغب بنشر مسار تعليمي؟ اضغط هنا

The moment of inertia for nuclear collective rotations was derived within the semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase space variabl es. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows to express quite accurately the shell components of the moment of inertia in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, in good agreement with the quantum calculations.
We calculate the isospin-mixing parameter for several Tz=-1, Tz=0 and Tz=1 nuclei from Mg to Sn in the particle-number conserving Higher Tamm-Dancoff approach taking into account the pairing correlations. In particular we investigate the role of the Coulomb interaction and the |Tz|=1 pairing correlations. To do so the HTDA approach is implemented with the SIII Skyrme effective nucleon-nucleon interaction in the mean-field channel and a delta interaction in the pairing channel. We conclude from this investigation that the pairing correlations bring a large contribution to isospin-symmetry breaking, whereas the Coulomb interaction turns out to play a less important role. Moreover we find that the isospin-mixing parameters for Tz=-1 and Tz=1 nuclei are comparable while they are about twice as large for Tz=0 nuclei (between 3% and 6%, including doubly magic nuclei).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا