ترغب بنشر مسار تعليمي؟ اضغط هنا

154 - Daisuke Kawata 2013
To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM, using a new stellar feedback scheme. We use the new version of our origina l N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae (SNe) feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor inter-stellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from larger spiral galaxies where the non-axisymmetric structures, such as spiral arms, are a main driver of star formation.
We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1,344 kg.days was accrued over 319 days of continuous ope ration between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8E-8 pb near 50 GeV/c^2 WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9E-8 pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0E-3 pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach.
We examine electron and nuclear recoil backgrounds from radioactivity in the ZEPLIN-III dark matter experiment at Boulby. The rate of low-energy electron recoils in the liquid xenon WIMP target is 0.75$pm$0.05 events/kg/day/keV, which represents a 20 -fold improvement over the rate observed during the first science run. Energy and spatial distributions agree with those predicted by component-level Monte Carlo simulations propagating the effects of the radiological contamination measured for materials employed in the experiment. Neutron elastic scattering is predicted to yield 3.05$pm$0.5 nuclear recoils with energy 5-50 keV per year, which translates to an expectation of 0.4 events in a 1-year dataset in anti-coincidence with the veto detector for realistic signal acceptance. Less obvious background sources are discussed, especially in the context of future experiments. These include contamination of scintillation pulses with Cherenkov light from Compton electrons and from $beta$ activity internal to photomultipliers, which can increase the size and lower the apparent time constant of the scintillation response. Another challenge is posed by multiple-scatter $gamma$-rays with one or more vertices in regions that yield no ionisation. If the discrimination power achieved in the first run can be replicated, ZEPLIN-III should reach a sensitivity of $sim 1 times 10^{-8}$ pb$cdot$year to the scalar WIMP-nucleon elastic cross-section, as originally conceived.
118 - Peter J. Barnes 2011
The Census of High- and Medium-mass Protostars (CHaMP) is the first large-scale, unbiased, uniform mapping survey at sub-parsec scale resolution of 90 GHz line emission from massive molecular clumps in the Milky Way. We present the first Mopra (ATNF) maps of the CHaMP survey region (300{deg}>l>280{deg}) in the HCO+ J=1-0 line, which is usually thought to trace gas at densities up to 10^11 m-3. In this paper we introduce the survey and its strategy, describe the observational and data reduction procedures, and give a complete catalogue of moment maps of the HCO+ J=1-0 emission from the ensemble of 301 massive molecular clumps. From these maps we also derive the physical parameters of the clumps, using standard molecular spectral-line analysis techniques. This analysis yields the following range of properties: integrated line intensity 1-30 K km s-1, peak line brightness 1-7 K, linewidth 1-10 km s-1, integrated line luminosity 0.5-200 K km s-1 pc^2, FWHM size 0.2-2.5 pc, mean projected axial ratio 2, optical depth 0.08-2, total surface density 30-3000 M{sun} pc-2, number density 0.2-30 x 10^9 m-3, mass 15-8000 M{sun}, virial parameter 1-55, and total gas pressure 0.3-700 pPa. We find that the CHaMP clumps do not obey a Larson-type size-linewidth relation. Among the clumps, there exists a large population of subthermally excited, weakly-emitting (but easily detectable) dense molecular clumps, confirming the prediction of Narayanan et al. (2008). These weakly-emitting clumps comprise 95% of all massive clumps by number, and 87% of the molecular mass, in this portion of the Galaxy; their properties are distinct from the brighter massive star-forming regions that are more typically studied. If the clumps evolve by slow contraction, the 95% of fainter clumps may represent a long-lived stage of pressure-confined, gravitationally stable massive clump evolution, while the CHaMP ... (abridged)
The design, optimisation and construction of an anti-coincidence veto detector to complement the ZEPLIN-III direct dark matter search instrument is described. One tonne of plastic scintillator is arranged into 52 bars individually read out by photomu ltipliers and coupled to a gadolinium-loaded passive polypropylene shield. Particular attention has been paid to radiological content. The overall aim has been to achieve a veto detector of low threshold and high efficiency without the creation of additional background in ZEPLIN-III, all at a reasonable cost. Extensive experimental measurements of the components have been made, including radioactivity levels and performance characteristics. These have been used to inform a complete end-to-end Monte Carlo simulation that has then been used to calculate the expected performance of the new instrument, both operating alone and as an anti-coincidence detector for ZEPLIN-III. The veto device will be capable of rejecting over 65% of coincident nuclear recoil events from neutron background in the energy range of interest in ZEPLIN-III. This will reduce the background in ZEPLIN-III from ~0.4 to ~0.14 events per year in the WIMP acceptance region, a significant factor in the event of a non-zero observation. Furthermore, in addition to providing valuable diagnostic capabilities, the veto is capable of tagging over 15% for gamma-ray rejection, all whilst contributing no significant additional background. In conjunction with the replacement of the internal ZEPLIN-III photomultiplier array, the new veto is expected to improve significantly the sensitivity of the ZEPLIN-III instrument to dark matter, allowing spin independent WIMP-nucleon cross sections below 1E-8 pb to be probed.
We present limits on the WIMP-nucleon cross section for inelastic dark matter derived from the 2008 run of ZEPLIN-III. Cuts, notably on scintillation pulse shape and scintillation-to-ionisation ratio, give a net exposure of 63 kg.days in the range 20 -80keV nuclear recoil energy, in which 6 events are observed. Upper limits on signal rate are derived from the maximum empty patch in the data. Under standard halo assumptions a small region of parameter space consistent, at 99% CL, with causing the 1.17 ton.year DAMA modulation signal is allowed at 90% CL: it is in the mass range 45-60 GeV with a minimum CL of 88%, again derived from the maximum patch. This is the tightest constraint on that explanation of the DAMA result yet presented using a xenon target.
The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses a 12kg two-phase xenon time projection chamber to search for the weakly interacting massive particles (WIMPs) that may account for the dark matter of our Galaxy. The detect or measures both scintillation and ionisation produced by radiation interacting in the liquid to differentiate between the nuclear recoils expected from WIMPs and the electron recoil background signals down to ~10keV nuclear recoil energy. An analysis of 847kg.days of data acquired between February 27th 2008 and May 20th 2008 has excluded a WIMP-nucleon elastic scattering spin-independent cross-section above 8.1x10(-8)pb at 55GeV/c2 with a 90% confidence limit. It has also demonstrated that the two-phase xenon technique is capable of better discrimination between electron and nuclear recoils at low-energy than previously achieved by other xenon-based experiments.
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Ana lysis of $sim$450 kg$cdot$days fiducial exposure revealed a most likely signal of zero events, leading to a 90%-confidence upper limit on the pure WIMP-neutron cross-section of $sigma_n=1.8times 10^{-2}$ pb at 55 GeV/$c^2$ WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn CD nucleon-nucleon potential were used for the odd-neutron isotopes $^{129}$Xe and $^{131}$Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction is much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of $sim$2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا