ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally activated magnetization decay is studied in ensembles of clusters of interacting dipolar moments by applying the master-equation formalism, as a model of thermal relaxation in systems of interacting single-domain ferromagnetic particles. So lving the associated master-equation reveals a breakdown of the energy barrier picture depending on the geometrical symmetry of structures. Deviations are most pronounced for reduced symmetry and result in a strong interaction dependence of relaxation rates on the memory of system initialization. A simple two-state system description of an ensemble of clusters is developed which accounts for the observed anomalies. These results follow from a semi-analytical treatment, and are fully supported by kinetic Monte-Carlo simulations.
The third Workshop of the NuMass series (The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade: NuMass 2013) was held at Dipartimento di Fisica G. Occhialini, University of Milano-Bicoc ca in Milano, Italy, on 4-7 February 2013. The goal of this international workshop was to review the status and future of direct and indirect neutrino mass measurements in the laboratory as well as from astrophysical and cosmological observations. This paper collects most of the contributions presented during the Workshop.
There has been much interest recently in the discovery of thermally induced magnetisation switching, where a ferrimagnetic system can be switched deterministically without and applied magnetic field. Experimental results suggest that the reversal occ urs due to intrinsic material properties, but so far the microscopic mechanism responsible for reversal has not been identified. Using computational and analytic methods we show that the switching is caused by the excitation of two magnon bound states, the properties of which are dependent on material factors. This discovery allows us to accurately predict the switching behaviour and the identification of this mechanism will allow new classes of materials to be identified or designed to use this switching in memory devices in the THz regime.
After the application of an ultrashort laser pulse, the antiferromagnetic alignment in rare earth-transition metal alloys can temporarily become ferromagnetic with the rare-earth polarity. Proposed models merely describe this effect, without showin g the route for its manipulation. Here we use extensive atomistic spin model simulations and micromagnetic theory for ferrimagnets at elevated temperatures to predict that the polarity of this transient ferromagnetic-like state can be controlled by initial temperature. We show that this arises because the magnetic response of each lattice has a different temperature dependence, at low temperatures the transition metal responds faster than the rare earth, while at high temperatures this role is interchanged. Our findings contribute to the physical understanding and control of this state and thus open new perspectives for its use in ultrafast magnetic devices.
Internal gravity waves are excited at the interface of convection and radiation zones of a solar-type star by the tidal forcing of a short-period planet. The fate of these waves as they approach the centre of the star depends on their amplitude. We d iscuss the results of numerical simulations of these waves approaching the centre of a star, and the resulting evolution of the spin of the central regions of the star, and the orbit of the planet. If the waves break, we find efficient tidal dissipation, which is not present if the waves perfectly reflect from the centre. This highlights an important amplitude dependence of the (stellar) tidal quality factor Q, which has implications for the survival of planets on short-period orbits around solar-type stars, with radiative cores.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا