ترغب بنشر مسار تعليمي؟ اضغط هنا

The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles has been measured by the STAR coll aboration in the beam energy scan (BES) program. In this article, we examine the collision energy dependence of directed flow $v_1$ in fluid dynamical model descriptions of heavy ion collisions for $sqrt{s_{NN}}=3-20$ GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities like e.g. the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data, the values of the slopes are always larger than in the data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا