ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a detailed characterization of coherence in seven transmon qubits in a circuit QED architecture. We find that spontaneous emission rates are strongly influenced by far off-resonant modes of the cavity and can be understood within a semicla ssical circuit model. A careful analysis of the spontaneous qubit decay into a microwave transmission-line cavity can accurately predict the qubit lifetimes over two orders of magnitude in time and more than an octave in frequency. Coherence times $T_1$ and $T_2^*$ of more than a microsecond are reproducibly demonstrated.
We present an experimental realization of the transmon qubit, an improved superconducting charge qubit derived from the Cooper pair box. We experimentally verify the predicted exponential suppression of sensitivity to 1/f charge noise [J. Koch et al. , Phys. Rev. A 76, 042319 (2007)]. This removes the leading source of dephasing in charge qubits, resulting in homogenously broadened transitions with relaxation and dephasing times in the microsecond range. Our systematic characterization of the qubit spectrum, anharmonicity, and charge dispersion shows excellent agreement with theory, rendering the transmon a promising qubit for future steps towards solid-state quantum information processing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا