ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the origin of a flux increase found during a transit of TrES-1, observed with the HST. This feature in the HST light curve cannot be attributed to noise and is supposedly a dark area on the stellar surface of the host star eclipsed by TrES-1 during its transit. We investigate the likeliness of two possible hypothesis for its origin: A starspot or a second transiting planet. We made use of several transit observations of TrES-1 from space with the HST and from ground with the IAC-80 telescope. On the basis of these observations we did a statistical study of flux variations in each of the observed events, to investigate if similar flux increases are present in other parts of the data set. The HST observation presents a single clear flux rise during a transit whereas the ground observations led to the detection of two such events but with low significance. In the case of having observed a starspot in the HST data, assuming a central impact between the spot and TrES-1, we would obtain a lower limit for the spot radius of 42000 km. For this radius the spot temperature would be 4690 K, 560 K lower then the stellar surface of 5250 K. For a putative second transiting planet we can set a lower limit for its radius at 0.37 R$_J$ and for periods of less than 10.5 days, we can set an upper limit at 0.72 R$_J$. Assuming a conventional interpretation, then this HST observation constitutes the detection of a starspot. Alternatively, this flux rise might also be caused by an additional transiting planet. The true nature of the origin can be revealed if a wavelength dependency of the flux rise can be shown or discarded with a higher certainty. Additionally, the presence of a second planet can also be detected by radial velocity measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا