ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Radio Burst (FRB) dispersion measures (DMs) record the presence of ionized baryons that are otherwise invisible to other techniques enabling resolution of the matter distribution in the cosmic web. In this work, we aim to estimate the contributi on to FRB 180924 DM from foreground galactic halos. Localized by ASKAP to a massive galaxy, this sightline is notable for an estimated cosmic web contribution to the DM ($rm DM_{cosmic} = 220~pc~cm^{-3}$), which is less than the average value at the host redshift ($rm z = 0.3216$) estimated from the Macquart relation ($280~rm pc~cm^{-3}$). In the favored models of the cosmic web, this suggests few intersections with foreground halos at small impact parameters ($lesssim 100$ kpc). To test this hypothesis, we carried out spectroscopic observations of the field galaxies within $sim$1 of the sightline with VLT/MUSE and Keck/LRIS. Furthermore, we developed a probabilistic methodology that leverages photometric redshifts derived from wide-field DES and WISE imaging. We conclude that there is no galactic halo that closely intersects the sightline and also that the net DM contribution from halos, $rm DM_{halos}< 45~pc~cm^{-3}$ (95 % c.l.). This value is lower than the $rm DM_{halos}$ estimated from an average sightline ($121~rm pc~cm^{-3}$) using the Planck $Lambda CDM$ model and the Aemulus halo mass function and reasonably explains its low $rm DM_{cosmic}$ value. We conclude that FRB 180924 represents the predicted majority of sightlines in the universe with no proximate foreground galactic halos. Our framework lays the foundation for a comprehensive analysis of FRB fields in the near future.
We present the first detailed dissection of the circumgalactic medium (CGM) of massive starburst galaxies at z > 2. Our target is a submillimeter galaxy (SMG) at z = 2.674 that has a star formation rate of 1200 $M_odot$/yr and a molecular gas reservo ir of $1.3times10^{11} M_odot$. We characterize its CGM with two background QSOs at impact parameters of 93 kpc and 176 kpc. We detect strong HI and metal-line absorption near the redshift of the SMG towards both QSOs, each consisting of three main subsystems spanning over 1500 km/s. The absorbers show remarkable kinematic and metallicity coherence across a separation of 86 kpc. In particular, the cool gas in the CGM of the SMG exhibits high HI column densities ($log N_{rm HI}/{rm cm}^{-2} = 20.2, 18.6$), low metallicities ([M/H] $approx$ -2.0), and similar radial velocities ($approx$ -300 km/s). While the HI column densities match previous results on the CGM around QSOs at z > 2, the metallicities are lower by more than an order of magnitude, making it an outlier in the line width$-$metallicity relation of damped Ly$alpha$ absorbers. The large physical extent, the velocity coherence, the high surface density, and the low metallicity are all consistent with the cool, inflowing, and near-pristine gas streams predicted to penetrate hot massive halos at z > 1.5. We estimate a total gas accretion rate of ~100 $M_odot$/yr from three such streams, which falls short of the star formation rate but is consistent with simulations. At this rate, it takes about a gigayear to acquire the molecular gas reservoir of the central starburst.
By now, tens of gravitational-wave (GW) events have been detected by the LIGO and Virgo detectors. These GWs have all been emitted by compact binary coalescence, for which we have excellent predictive models. However, there might be other sources for which we do not have reliable models. Some are expected to exist but to be very rare (e.g., supernovae), while others may be totally unanticipated. So far, no unmodeled sources have been discovered, but the lack of models makes the search for such sources much more difficult and less sensitive. We present here a search for unmodeled GW signals using semi-supervised machine learning. We apply deep learning and outlier detection algorithms to labeled spectrograms of GW strain data, and then search for spectrograms with anomalous patterns in public LIGO data. We searched $sim 13%$ of the coincident data from the first two observing runs. No candidates of GW signals were detected in the data analyzed. We evaluate the sensitivity of the search using simulated signals, we show that this search can detect spectrograms containing unusual or unexpected GW patterns, and we report the waveforms and amplitudes for which a $50%$ detection rate is achieved.
We present observations and detailed characterizations of five new host galaxies of fast radio bursts (FRBs) discovered with the Australian Square Kilometre Array Pathfinder (ASKAP) and localized to $lesssim 1$. Combining these galaxies with FRB host s from the literature, we introduce criteria based on the probability of chance coincidence to define a sub-sample of 10 highly-confident associations (at $z=0.03-0.52$), three of which correspond to known repeating FRBs. Overall, the FRB host galaxies exhibit a broad, continuous range of color ($M_u-M_r = 0.9 - 2.0$), stellar mass ($M_star = 10^{8} - 6times 10^{10},M_{odot}$), and star-formation rate (${rm SFR} = 0.05 - 10,M_{odot},{rm yr}^{-1}$) spanning the full parameter space occupied by $z<0.5$ galaxies. However, they do not track the color-magnitude, SFR-$M_star$, nor BPT diagrams of field galaxies surveyed at similar redshifts. There is an excess of green valley galaxies and an excess of emission-line ratios indicative of a harder radiation field than that generated by star-formation alone. From the observed stellar mass distribution, we rule out the hypothesis that FRBs strictly track stellar mass in galaxies ($>99%$ c.l.). We measure a median offset of 3.3 kpc from the FRB to the estimated center of the host galaxies and compare the host-burst offset distribution and other properties with the distributions of long- and short-duration gamma-ray bursts (LGRBs and SGRBs), core-collapse supernovae (CC-SNe), and Type Ia SNe. This analysis rules out galaxies hosting LGRBs (faint, star-forming galaxies) as common hosts for FRBs ($>95%$ c.l.). Other transient channels (SGRBs, CC- and Type Ia SNe) have host galaxy properties and offsets consistent with the FRB distributions. All of the data and derived quantities are made publicly available on a dedicated website and repository.
137 - Nissim Kanekar 2020
We have used the Atacama Large Millimeter/submillimeter Array (ALMA) to carry out a search for CO (3$-$2) or (4$-$3) emission from the fields of 12 high-metallicity ([M/H]~$geq -0.72$,dex) damped Lyman-$alpha$ absorbers (DLAs) at $z approx 1.7-2.6$. We detected CO emission from galaxies in the fields of five DLAs (two of which have been reported earlier), obtaining high molecular gas masses, $rm M_{mol} approx (1.3 - 20.7) times (alpha_{rm CO}/4.36) times 10^{10} ; M_odot$. The impact parameters of the CO emitters to the QSO sightline lie in the range $b approx 5.6-100$~kpc, with the three new CO detections having $b lesssim 15$~kpc. The highest CO line luminosities and inferred molecular gas masses are associated with the highest-metallicity DLAs, with [M/H]~$gtrsim -0.3$,dex. The high inferred molecular gas masses may be explained by a combination of a stellar mass-metallicity relation and a high molecular gas-to-stars mass ratio in high-redshift galaxies; the DLA galaxies identified by our CO searches have properties consistent with those of emission-selected samples. None of the DLA galaxies detected in CO emission were identified in earlier optical or near-IR searches and vice-versa; DLA galaxies earlier identified in optical/near-IR searches were not detected in CO emission. The high ALMA CO and C[{sc ii}]~158$mu$m detection rate in high-$z$, high-metallicity DLA galaxies has revolutionized the field, allowing the identification of dusty, massive galaxies associated with high-$z$ DLAs. The H{sc i}-absorption criterion identifying DLAs selects the entire high-$z$ galaxy population, including dusty and UV-bright galaxies, in a wide range of environments.
This paper introduces Polyphorm, an interactive visualization and model fitting tool that provides a novel approach for investigating cosmological datasets. Through a fast computational simulation method inspired by the behavior of Physarum polycepha lum, an unicellular slime mold organism that efficiently forages for nutrients, astrophysicists are able to extrapolate from sparse datasets, such as galaxy maps archived in the Sloan Digital Sky Survey, and then use these extrapolations to inform analyses of a wide range of other data, such as spectroscopic observations captured by the Hubble Space Telescope. Researchers can interactively update the simulation by adjusting model parameters, and then investigate the resulting visual output to form hypotheses about the data. We describe details of Polyphorms simulation model and its interaction and visualization modalities, and we evaluate Polyphorm through three scientific use cases that demonstrate the effectiveness of our approach.
The Australian SKA Pathfinder (ASKAP) telescope has started to localize Fast Radio Bursts (FRBs) to arcsecond accuracy from the detection of a single pulse, allowing their host galaxies to be reliably identified. We discuss the global properties of t he host galaxies of the first four FRBs localized by ASKAP, which lie in the redshift range $0.11<z<0.48$. All four are massive galaxies (log( $M_{*}/ M_{odot}$) $sim 9.4 -10.4$) with modest star-formation rates of up to $2M_{odot}$yr$^{-1}$ -- very different to the host galaxy of the first repeating FRB 121102, which is a dwarf galaxy with a high specific star-formation rate. The FRBs localized by ASKAP typically lie in the outskirts of their host galaxies, which appears to rule out FRB progenitor models that invoke active galactic nuclei (AGN) or free-floating cosmic strings. The stellar population seen in these host galaxies also disfavors models in which all FRBs arise from young magnetars produced by superluminous supernovae (SLSNe), as proposed for the progenitor of FRB 121102. A range of other progenitor models (including compact-object mergers and magnetars arising from normal core-collapse supernovae) remain plausible.
176 - Sunil Simha 2020
FRB 190608 was detected by ASKAP and localized to a spiral galaxy at $z_{host}=0.11778$ in the SDSS footprint. The burst has a large dispersion measure ($DM_{FRB}=339.8$ $pc/cm^3$) compared to the expected cosmic average at its redshift. It also has a large rotation measure ($RM_{FRB}=353$ $rad/m^2$) and scattering timescale ($tau=3.3$ $ms$ at $1.28$ $GHz$). Chittidi et al (2020) perform a detailed analysis of the ultraviolet and optical emission of the host galaxy and estimate the host DM contribution to be $110pm 37$ $pc/cm^3$. This work complements theirs and reports the analysis of the optical data of galaxies in the foreground of FRB 190608 to explore their contributions to the FRB signal. Together, the two manuscripts delineate an observationally driven, end-to-end study of matter distribution along an FRB sightline; the first study of its kind. Combining KCWI observations and public SDSS data, we estimate the expected cosmic dispersion measure $DM_{cosmic}$ along the sightline to FRB 190608. We first estimate the contribution of hot, ionized gas in intervening virialized halos ($DM_{halos} approx 7-28$ $pc/cm^3$). Then, using the Monte Carlo Physarum Machine (MCPM) methodology, we produce a 3D map of ionized gas in cosmic web filaments and compute the DM contribution from matter outside halos ($DM_{IGM} approx 91-126$ $pc/cm^3$). This implies a greater fraction of ionized gas along this sightline is extant outside virialized halos. We also investigate whether the intervening halos can account for the large FRB rotation measure and pulse width and conclude that it is implausible. Both the pulse broadening and the large Faraday rotation likely arise from the progenitor environment or the host galaxy.
We present high spatial-resolution (~2kpc) Atacama Large Millimeter/submillimeter Array (ALMA) observations of [CII] 158um and dust-continuum emission from a galaxy at z=3.7978 selected by its strong HI absorption (a damped Lya absorber, DLA) against a background QSO. Our ALMA images reveal a pair of star-forming galaxies separated by ~6kpc (projected) undergoing a major merger. Between these galaxies is a third emission component with highly elevated (2x) [CII] 158um emission relative to the dust continuum, which is likely to arise from stripped gas associated with the merger. This merger of two otherwise-normal galaxies is not accompanied by enhanced star-formation, contrary to mergers detected in most luminosity-selected samples. The DLA associated with the merger exhibits extreme kinematics, with a velocity width for the low-ionization metal lines of Dv90~470km/s that spans the velocity spread revealed in the [CII] 158um emission. We propose that DLAs with high Dv90 values are a signpost of major mergers in normal galaxies at high redshifts, and use the distribution of the velocity widths of metal lines in high-z DLAs to provide a rough estimate the fraction of z>3 galaxies that are undergoing a major merger.
We measure the effective opacity ($tau_{eff}$) of the Intergalactic Medium (IGM) from the composite spectra of 281 Lyman-Break Galaxies (LBGs) in the redshift range $2 lesssim z lesssim 3$. Our spectra are taken from the COSMOS Lyman-Alpha Mapping An d Tomographic Observations (CLAMATO) survey derived from the Low Resolution Imaging Spectrometer (LRIS) on the W.M. Keck I telescope. We generate composite spectra in two redshift intervals and fit them with spectral energy distribution (SED) models composed of simple stellar populations. Extrapolating these SED models into the Ly$alpha$ forest, we measure the effective Ly$alpha$ opacity ($tau_{eff}$) in the $2.02 leq z leq 2.44$ range. At $z = 2.22$, we estimate $tau_{eff} = 0.159 pm 0.001$ from a power-law fit to the data. These measurements are consistent with estimates from quasar analyses at $z<2.5$ indicating that the systematic errors associated with normalizing quasar continua are not substantial. We provide a Gaussian Processes model of our results and previous $tau_{eff}$ measurements that describes the steep redshift evolution in $tau_{eff}$ from $z = 1.5 - 4$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا