ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - J. Vit , J. Viirok , L. Peedu 2021
Non-reciprocal directional dichroism assigns an optical diode-like property to non-centrosymmetric magnets, making them appealing for low-dissipation optical devices. However, the direct electric control of this phenomenon at constant temperatures is scarce. In Ba$_2$CoGe$_2$O$_7$, we demonstrate the isothermal electric switch between domains possessing opposite magnetoelectric susceptibilities. Combining THz spectroscopy and multiboson spin-wave analysis, we show that unbalancing the domain population realizes the non-reciprocal light absorption of spin excitations.
The Ising chain in transverse field is a paradigmatic model for a host of physical phenomena, including spontaneous symmetry breaking, topological defects, quantum criticality, and duality. Although the quasi-1D ferromagnet CoNb$_2$O$_6$ has been put forward as the best material example of the transverse field Ising model, it exhibits significant deviations from ideality. Through a combination of THz spectroscopy and theory, we show that CoNb$_2$O$_6$ in fact is well described by a different model with strong bond dependent interactions, which we dub the {it twisted Kitaev chain}, as these interactions share a close resemblance to a one-dimensional version of the intensely studied honeycomb Kitaev model. In this model the ferromagnetic ground state of CoNb$_2$O$_6$ arises from the compromise between two distinct alternating axes rather than a single easy axis. Due to this frustration, even at zero applied field domain-wall excitations have quantum motion that is described by the celebrated Su-Schriefer-Heeger model of polyacetylene. This leads to rich behavior as a function of field. Despite the anomalous domain wall dynamics, close to a critical transverse field the twisted Kitaev chain enters a universal regime in the Ising universality class. This is reflected by the observation that the excitation gap in CoNb$_2$O$_6$ in the ferromagnetic regime closes at a rate precisely twice that of the paramagnet. This originates in the duality between domain walls and spin-flips and the topological conservation of domain wall parity. We measure this universal ratio `2 to high accuracy -- the first direct evidence for the Kramers-Wannier duality in nature.
390 - J. Viirok , U. Nagel , T. R~o~om 2018
The coexisting magnetic and ferroelectric orders in multiferroic materials give rise to a handful of novel magnetoelectric phenomena, such as the absorption difference for the opposite propagation directions of light called the non-reciprocal directi onal dichroism (NDD). Usually these effects are restricted to low temperature, where the multiferroic phase develops. In this paper we report the observation of NDD in the paramagnetic phase of Sr2CoSi2O7 up to temperatures more than ten times higher than its Neel temperature (7 K) and in fields up to 30 T. The magnetically induced polarization and NDD in the disordered paramagnetic phase is readily explained by the single-ion spin-dependent hybridization mechanism, which does not necessitate correlation effects between magnetic ions. The Sr2CoSi2O7 provides an ideal system for a theoretical case study, demonstrating the concept of magnetoelectric spin excitations in a paramagnet via analytical as well as numerical approaches. We applied exact diagonalization of a spin cluster to map out the temperature and field dependence of the spin excitations, as well as symmetry arguments of the single ion and lattice problem to get the spectrum and selection rules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا