ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - T. Koch , J. Loos , 2013
We consider the steady-state thermoelectric transport through a vibrating molecular quantum dot that is contacted to macroscopic leads. For moderate electron-phonon interaction strength and comparable electronic and phononic timescales, we investigat e the impact of the formation of a local polaron on the thermoelectric properties of the junction. We apply a variational Lang-Firsov transformation and solve the equations of motion in the Kadanoff-Baym formalism up to second order in the dot-lead coupling parameter. We calculate the thermoelectric current and voltage for finite temperature differences in the resonant and inelastic tunneling regimes. For a near resonant dot level, the formation of a local polaron can boost the thermoelectric effect because of the Franck-Condon blockade. The line shape of the thermoelectric voltage signal becomes asymmetrical due to the varying polaronic character of the dot state and in the nonlinear transport regime, vibrational signatures arise.
76 - T. Koch , J. Loos , A. Alvermann 2011
We consider a quantum dot, affected by a local vibrational mode and contacted to macroscopic leads, in the non-equilibrium steady-state regime. We apply a variational Lang-Firsov transformation and solve the equations of motion of the Green functions in the Kadanoff-Baym formalism up to second order in the interaction coefficients. The variational determination of the transformation parameter through minimization of the thermodynamic potential allows us to calculate the electron/polaron spectral function and conductance for adiabatic to anti-adiabatic phonon frequencies and weak to strong electron-phonon couplings. We investigate the qualitative impact of the quasi-particle renormalization on the inelastic electron tunneling spectroscopy signatures and discuss the possibility of a polaron induced negative differential conductance. In the high-voltage regime we find that the polaron level follows the lead chemical potential to enhance resonant transport.
351 - J Loos , T Koch , A Alvermann 2009
To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to metallic leads, we extend an analytical approach that we previously developed for the many-polaron problem. Our scheme is based on an incomplete variatio nal Lang-Firsov transformation, combined with a perturbative calculation of the electron-phonon self-energy in the framework of generalised Matsubara functions. This allows us to describe the system at weak to strong coupling and intermediate to large phonon frequencies. We present results for the quantum dot spectral function and for the kinetic coefficient that characterises the electron transport through the dot. With these results we critically examine the strengths and limitations of our approach, and discuss the properties of the molecular quantum dot in the context of polaron physics. We place particular emphasis on the importance of corrections to the concept of an antiadiabatic dot polaron suggested by the complete Lang-Firsov transformation.
143 - H. Fehske , G. Wellein , J. Loos 2008
We consider transport through finite quantum systems such as quantum barriers, wells, dots or junctions, coupled to local vibrational modes in the quantal regime. As a generic model we study the Holstein-Hubbard Hamiltonian with site-dependent potent ials and interactions. Depending on the barrier height to electron-phonon coupling strength ratio and the phonon frequency we find distinct opposed behaviors: Vibration-mediated tunneling or intrinsic localization of (bi)polarons. These regimes are strongly manifested in the density correlations, mobility, and optical response calculated by exact numerical techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا