ترغب بنشر مسار تعليمي؟ اضغط هنا

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the Southern Hemisphere designed specifically to explore the low-frequency astronomica l sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21 cm emission from the epoch of reionisation in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
We seek to reconcile observations of small source sizes in the solar corona at 327 MHz with predictions of scattering models that incorporate refractive index effects, inner scale effects and a spherically diverging wavefront. We use an empirical pre scription for the turbulence amplitude $C_{N}^{2}(R)$ based on VLBI observations by Spangler and coworkers of compact radio sources against the solar wind for heliocentric distances $R approx$ 10--50 $R_{odot}$. We use the Coles & Harmon model for the inner scale $l_{i}(R)$, that is presumed to arise from cyclotron damping. In view of the prevalent uncertainty in the power law index that characterizes solar wind turbulence at various heliocentric distances, we retain this index as a free parameter. We find that the inclusion of spherical divergence effects suppresses the predicted source size substantially. We also find that inner scale effects significantly reduce the predicted source size. An important general finding for solar sources is that the calculations substantially underpredict the observed source size. Three possible, non-exclusive, interpretations of this general result are proposed. First and simplest, future observations with better angular resolution will detect much smaller sources. Consistent with this, previous observations of small sources in the corona at metric wavelengths are limited by the instrument resolution. Second, the spatially-varying level of turbulence $C_{N}^{2}(R)$ is much larger in the inner corona than predicted by straightforward extrapolation Sunwards of the empirical prescription, which was based on observations between 10--50 $R_{odot}$. Either the functional form or the constant of proportionality could be different. Third, perhaps the inner scale is smaller than the model, leading to increased scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا