ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - Ivana Damjanov 2014
Massive compact systems at 0.2<z<0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme o bjects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the BOSS spectroscopic dataset by identifying point-like SDSS photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z~0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2<z<0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0<z<2.
130 - Ivana Damjanov 2011
In this paper we present the coordinates of 67 55 x 55 patches of sky which have the rare combination of both high stellar surface density (>0.5 arcmin^{-2} with 13<R<16.5 mag) and low extinction (E(B-V)<0.1). These fields are ideal for adaptive-opti cs based follow-up of extragalactic targets. One region of sky, situated near Baades Window, contains most of the patches we have identified. Our optimal field, centered at RA: 7h24m3s, Dec: -1deg2715, has an additional advantage of being accessible from both hemispheres. We propose a figure of merit for quantifying real-world adaptive optics performance, and use this to analyze the performance of multi-conjugate adaptive optics in these fields. We also compare our results to those that would be obtained in existing deep fields. In some cases adaptive optics observations undertaken in the fields given in this paper would be orders of magnitude more efficient than equivalent observations undertaken in existing deep fields.
108 - Ivana Damjanov 2009
We present the results of NICMOS imaging of a sample of 16 high mass passively evolving galaxies with 1.3<z<2, taken primarily from the Gemini Deep Deep Survey. Around 80% of galaxies in our sample have spectra dominated by stars with ages >1 Gyr. Ou r rest-frame R-band images show that most of these objects have compact regular morphologies which follow the classical R^1/4 law. These galaxies scatter along a tight sequence in the Kormendy relation. Around one-third of the massive red objects are extraordinarily compact, with effective radii under one kiloparsec. Our NICMOS observations allow the detection of such systems more robustly than is possible with optical (rest-frame UV) data, and while similar systems have been seen at z>2, this is the first time such systems have been detected in a rest-frame optical survey at 1.3<z<2. We refer to these compact galaxies as red nuggets. Similarly compact massive galaxies are completely absent in the nearby Universe. We introduce a new stellar mass Kormendy relation (stellar mass density vs size) which isolates the effects of size evolution from those of luminosity and color evolution. The 1.1 < z < 2 passive galaxies have mass densities that are an order of magnitude larger then early type galaxies today and are comparable to the compact distant red galaxies at 2 < z < 3. We briefly consider mechanisms for size evolution in contemporary models focusing on equal-mass mergers and adiabatic expansion driven by stellar mass loss. Neither of these mechanisms appears able to transform the high-redshift Kormendy relation into its local counterpart. <ABRIDGED>
We present a comprehensive study of disks around 81 young low-mass stars and brown dwarfs in the nearby ~2-Myr-old Chamaeleon I star-forming region. We use mid-infrared photometry from the Spitzer Space Telescope, supplemented by findings from ground -based high-resolution optical spectroscopy and adaptive optics imaging. We derive disk fractions of 52 (+/-6) % and 58 (+6/-7) % based on 8-micron and 24-micron colour excesses, respectively, consistent with those reported for other clusters of similar age. Within the uncertainties, the disk frequency in our sample of K3-M8 objects in Cha I does not depend on stellar mass. Diskless and disk-bearing objects have similar spatial distributions. There are no obvious transition disks in our sample, implying a rapid timescale for the inner disk clearing process; however, we find two objects with weak excess at 3-8 microns and substantial excess at 24 microns, which may indicate grain growth and dust settling in the inner disk. For a sub-sample of 35 objects with high-resolution spectra, we investigate the connection between accretion signatures and dusty disks: in the vast majority of cases (29/35) the two are well correlated, suggesting that, on average, the timescale for gas dissipation is similar to that for clearing the inner dust disk. The exceptions are six objects for which dust disks appear to persist even though accretion has ceased or dropped below measurable levels. Adaptive optics images of 65 of our targets reveal that 17 have companions at (projected) separations of 10-80 AU. Of the five <20 AU binaries, four lack infrared excess, possibly indicating that a close companion leads to faster disk dispersal. The closest binary with excess is separated by ~20 AU, which sets an upper limit of ~8 AU for the outer disk radius. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا